axmol/thirdparty/openal/core/hrtf.cpp

1474 lines
50 KiB
C++
Raw Normal View History

2021-05-14 10:15:42 +08:00
#include "config.h"
#include "hrtf.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iterator>
#include <memory>
#include <mutex>
#include <numeric>
#include <type_traits>
#include <utility>
#include "albit.h"
#include "albyte.h"
2021-05-14 10:15:42 +08:00
#include "alfstream.h"
#include "almalloc.h"
2022-04-25 12:02:45 +08:00
#include "alnumbers.h"
2021-05-14 10:15:42 +08:00
#include "alnumeric.h"
#include "aloptional.h"
2021-05-14 10:15:42 +08:00
#include "alspan.h"
#include "ambidefs.h"
#include "filters/splitter.h"
#include "helpers.h"
#include "logging.h"
#include "mixer/hrtfdefs.h"
#include "opthelpers.h"
#include "polyphase_resampler.h"
#include "vector.h"
2021-05-14 10:15:42 +08:00
namespace {
struct HrtfEntry {
std::string mDispName;
std::string mFilename;
2023-02-04 15:03:54 +08:00
/* GCC warns when it tries to inline this. */
~HrtfEntry();
2021-05-14 10:15:42 +08:00
};
2023-02-04 15:03:54 +08:00
HrtfEntry::~HrtfEntry() = default;
2021-05-14 10:15:42 +08:00
struct LoadedHrtf {
std::string mFilename;
std::unique_ptr<HrtfStore> mEntry;
2023-02-04 15:03:54 +08:00
template<typename T, typename U>
LoadedHrtf(T&& name, U&& entry)
: mFilename{std::forward<T>(name)}, mEntry{std::forward<U>(entry)}
{ }
LoadedHrtf(LoadedHrtf&&) = default;
/* GCC warns when it tries to inline this. */
~LoadedHrtf();
LoadedHrtf& operator=(LoadedHrtf&&) = default;
2021-05-14 10:15:42 +08:00
};
2023-02-04 15:03:54 +08:00
LoadedHrtf::~LoadedHrtf() = default;
2021-05-14 10:15:42 +08:00
/* Data set limits must be the same as or more flexible than those defined in
* the makemhr utility.
*/
constexpr uint MinFdCount{1};
constexpr uint MaxFdCount{16};
constexpr uint MinFdDistance{50};
constexpr uint MaxFdDistance{2500};
constexpr uint MinEvCount{5};
constexpr uint MaxEvCount{181};
constexpr uint MinAzCount{1};
constexpr uint MaxAzCount{255};
constexpr uint MaxHrirDelay{HrtfHistoryLength - 1};
constexpr uint HrirDelayFracBits{2};
constexpr uint HrirDelayFracOne{1 << HrirDelayFracBits};
constexpr uint HrirDelayFracHalf{HrirDelayFracOne >> 1};
static_assert(MaxHrirDelay*HrirDelayFracOne < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
constexpr char magicMarker00[8]{'M','i','n','P','H','R','0','0'};
constexpr char magicMarker01[8]{'M','i','n','P','H','R','0','1'};
constexpr char magicMarker02[8]{'M','i','n','P','H','R','0','2'};
constexpr char magicMarker03[8]{'M','i','n','P','H','R','0','3'};
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
2022-04-25 12:02:45 +08:00
constexpr auto PassthruCoeff = static_cast<float>(1.0/al::numbers::sqrt2);
2021-05-14 10:15:42 +08:00
std::mutex LoadedHrtfLock;
al::vector<LoadedHrtf> LoadedHrtfs;
2021-05-14 10:15:42 +08:00
std::mutex EnumeratedHrtfLock;
al::vector<HrtfEntry> EnumeratedHrtfs;
2021-05-14 10:15:42 +08:00
class databuf final : public std::streambuf {
int_type underflow() override
{ return traits_type::eof(); }
pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
{
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
return traits_type::eof();
char_type *cur;
switch(whence)
{
case std::ios_base::beg:
if(offset < 0 || offset > egptr()-eback())
return traits_type::eof();
cur = eback() + offset;
break;
case std::ios_base::cur:
if((offset >= 0 && offset > egptr()-gptr()) ||
(offset < 0 && -offset > gptr()-eback()))
return traits_type::eof();
cur = gptr() + offset;
break;
case std::ios_base::end:
if(offset > 0 || -offset > egptr()-eback())
return traits_type::eof();
cur = egptr() + offset;
break;
default:
return traits_type::eof();
}
setg(eback(), cur, egptr());
return cur - eback();
}
pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
{
// Simplified version of seekoff
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
return traits_type::eof();
if(pos < 0 || pos > egptr()-eback())
return traits_type::eof();
setg(eback(), eback() + static_cast<size_t>(pos), egptr());
return pos;
}
public:
databuf(const char_type *start_, const char_type *end_) noexcept
{
setg(const_cast<char_type*>(start_), const_cast<char_type*>(start_),
const_cast<char_type*>(end_));
}
};
class idstream final : public std::istream {
databuf mStreamBuf;
public:
idstream(const char *start_, const char *end_)
: std::istream{nullptr}, mStreamBuf{start_, end_}
{ init(&mStreamBuf); }
};
struct IdxBlend { uint idx; float blend; };
/* Calculate the elevation index given the polar elevation in radians. This
* will return an index between 0 and (evcount - 1).
*/
IdxBlend CalcEvIndex(uint evcount, float ev)
{
2023-02-04 15:03:54 +08:00
ev = (al::numbers::pi_v<float>*0.5f + ev) * static_cast<float>(evcount-1) *
al::numbers::inv_pi_v<float>;
2021-05-14 10:15:42 +08:00
uint idx{float2uint(ev)};
return IdxBlend{minu(idx, evcount-1), ev-static_cast<float>(idx)};
}
/* Calculate the azimuth index given the polar azimuth in radians. This will
* return an index between 0 and (azcount - 1).
*/
IdxBlend CalcAzIndex(uint azcount, float az)
{
2023-02-04 15:03:54 +08:00
az = (al::numbers::pi_v<float>*2.0f + az) * static_cast<float>(azcount) *
(al::numbers::inv_pi_v<float>*0.5f);
2021-05-14 10:15:42 +08:00
uint idx{float2uint(az)};
return IdxBlend{idx%azcount, az-static_cast<float>(idx)};
}
} // namespace
/* Calculates static HRIR coefficients and delays for the given polar elevation
* and azimuth in radians. The coefficients are normalized.
*/
2023-02-04 15:03:54 +08:00
void HrtfStore::getCoeffs(float elevation, float azimuth, float distance, float spread,
HrirArray &coeffs, const al::span<uint,2> delays)
2021-05-14 10:15:42 +08:00
{
2022-04-25 12:02:45 +08:00
const float dirfact{1.0f - (al::numbers::inv_pi_v<float>/2.0f * spread)};
2021-05-14 10:15:42 +08:00
size_t ebase{0};
2023-02-04 15:03:54 +08:00
auto match_field = [&ebase,distance](const Field &field) noexcept -> bool
2021-05-14 10:15:42 +08:00
{
2023-02-04 15:03:54 +08:00
if(distance >= field.distance)
return true;
ebase += field.evCount;
return false;
};
auto field = std::find_if(mFields.begin(), mFields.end()-1, match_field);
2021-05-14 10:15:42 +08:00
/* Calculate the elevation indices. */
const auto elev0 = CalcEvIndex(field->evCount, elevation);
const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)};
2023-02-04 15:03:54 +08:00
const size_t ir0offset{mElev[ebase + elev0.idx].irOffset};
const size_t ir1offset{mElev[ebase + elev1_idx].irOffset};
2021-05-14 10:15:42 +08:00
/* Calculate azimuth indices. */
2023-02-04 15:03:54 +08:00
const auto az0 = CalcAzIndex(mElev[ebase + elev0.idx].azCount, azimuth);
const auto az1 = CalcAzIndex(mElev[ebase + elev1_idx].azCount, azimuth);
2021-05-14 10:15:42 +08:00
/* Calculate the HRIR indices to blend. */
const size_t idx[4]{
ir0offset + az0.idx,
2023-02-04 15:03:54 +08:00
ir0offset + ((az0.idx+1) % mElev[ebase + elev0.idx].azCount),
2021-05-14 10:15:42 +08:00
ir1offset + az1.idx,
2023-02-04 15:03:54 +08:00
ir1offset + ((az1.idx+1) % mElev[ebase + elev1_idx].azCount)
2021-05-14 10:15:42 +08:00
};
/* Calculate bilinear blending weights, attenuated according to the
* directional panning factor.
*/
const float blend[4]{
(1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
(1.0f-elev0.blend) * ( az0.blend) * dirfact,
( elev0.blend) * (1.0f-az1.blend) * dirfact,
( elev0.blend) * ( az1.blend) * dirfact
};
/* Calculate the blended HRIR delays. */
2023-02-04 15:03:54 +08:00
float d{mDelays[idx[0]][0]*blend[0] + mDelays[idx[1]][0]*blend[1] + mDelays[idx[2]][0]*blend[2]
+ mDelays[idx[3]][0]*blend[3]};
2021-05-14 10:15:42 +08:00
delays[0] = fastf2u(d * float{1.0f/HrirDelayFracOne});
2023-02-04 15:03:54 +08:00
d = mDelays[idx[0]][1]*blend[0] + mDelays[idx[1]][1]*blend[1] + mDelays[idx[2]][1]*blend[2]
+ mDelays[idx[3]][1]*blend[3];
2021-05-14 10:15:42 +08:00
delays[1] = fastf2u(d * float{1.0f/HrirDelayFracOne});
/* Calculate the blended HRIR coefficients. */
2023-02-04 15:03:54 +08:00
float *coeffout{al::assume_aligned<16>(coeffs[0].data())};
2021-05-14 10:15:42 +08:00
coeffout[0] = PassthruCoeff * (1.0f-dirfact);
coeffout[1] = PassthruCoeff * (1.0f-dirfact);
std::fill_n(coeffout+2, size_t{HrirLength-1}*2, 0.0f);
for(size_t c{0};c < 4;c++)
{
2023-02-04 15:03:54 +08:00
const float *srccoeffs{al::assume_aligned<16>(mCoeffs[idx[c]][0].data())};
2021-05-14 10:15:42 +08:00
const float mult{blend[c]};
auto blend_coeffs = [mult](const float src, const float coeff) noexcept -> float
{ return src*mult + coeff; };
std::transform(srccoeffs, srccoeffs + HrirLength*2, coeffout, coeffout, blend_coeffs);
}
}
std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
{ return std::unique_ptr<DirectHrtfState>{new(FamCount(num_chans)) DirectHrtfState{num_chans}}; }
2023-02-04 15:03:54 +08:00
void DirectHrtfState::build(const HrtfStore *Hrtf, const uint irSize, const bool perHrirMin,
2021-05-14 10:15:42 +08:00
const al::span<const AngularPoint> AmbiPoints, const float (*AmbiMatrix)[MaxAmbiChannels],
const float XOverFreq, const al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain)
{
using double2 = std::array<double,2>;
struct ImpulseResponse {
const ConstHrirSpan hrir;
uint ldelay, rdelay;
};
2023-02-04 15:03:54 +08:00
const double xover_norm{double{XOverFreq} / Hrtf->mSampleRate};
mChannels[0].mSplitter.init(static_cast<float>(xover_norm));
2021-05-14 10:15:42 +08:00
for(size_t i{0};i < mChannels.size();++i)
{
const size_t order{AmbiIndex::OrderFromChannel()[i]};
2023-02-04 15:03:54 +08:00
mChannels[i].mSplitter = mChannels[0].mSplitter;
2021-05-14 10:15:42 +08:00
mChannels[i].mHfScale = AmbiOrderHFGain[order];
}
uint min_delay{HrtfHistoryLength*HrirDelayFracOne}, max_delay{0};
al::vector<ImpulseResponse> impres; impres.reserve(AmbiPoints.size());
2021-05-14 10:15:42 +08:00
auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse
{
2023-02-04 15:03:54 +08:00
auto &field = Hrtf->mFields[0];
2021-05-14 10:15:42 +08:00
const auto elev0 = CalcEvIndex(field.evCount, pt.Elev.value);
const size_t elev1_idx{minu(elev0.idx+1, field.evCount-1)};
2023-02-04 15:03:54 +08:00
const size_t ir0offset{Hrtf->mElev[elev0.idx].irOffset};
const size_t ir1offset{Hrtf->mElev[elev1_idx].irOffset};
2021-05-14 10:15:42 +08:00
2023-02-04 15:03:54 +08:00
const auto az0 = CalcAzIndex(Hrtf->mElev[elev0.idx].azCount, pt.Azim.value);
const auto az1 = CalcAzIndex(Hrtf->mElev[elev1_idx].azCount, pt.Azim.value);
2021-05-14 10:15:42 +08:00
const size_t idx[4]{
ir0offset + az0.idx,
2023-02-04 15:03:54 +08:00
ir0offset + ((az0.idx+1) % Hrtf->mElev[elev0.idx].azCount),
2021-05-14 10:15:42 +08:00
ir1offset + az1.idx,
2023-02-04 15:03:54 +08:00
ir1offset + ((az1.idx+1) % Hrtf->mElev[elev1_idx].azCount)
2021-05-14 10:15:42 +08:00
};
/* The largest blend factor serves as the closest HRIR. */
2023-02-04 15:03:54 +08:00
const size_t irOffset{idx[(elev0.blend >= 0.5f)*2 + (az1.blend >= 0.5f)]};
ImpulseResponse res{Hrtf->mCoeffs[irOffset],
Hrtf->mDelays[irOffset][0], Hrtf->mDelays[irOffset][1]};
2021-05-14 10:15:42 +08:00
min_delay = minu(min_delay, minu(res.ldelay, res.rdelay));
max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay));
return res;
};
std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res);
auto hrir_delay_round = [](const uint d) noexcept -> uint
{ return (d+HrirDelayFracHalf) >> HrirDelayFracBits; };
TRACE("Min delay: %.2f, max delay: %.2f, FIR length: %u\n",
min_delay/double{HrirDelayFracOne}, max_delay/double{HrirDelayFracOne}, irSize);
auto tmpres = al::vector<std::array<double2,HrirLength>>(mChannels.size());
2021-05-14 10:15:42 +08:00
max_delay = 0;
for(size_t c{0u};c < AmbiPoints.size();++c)
{
const ConstHrirSpan hrir{impres[c].hrir};
2023-02-04 15:03:54 +08:00
const uint base_delay{perHrirMin ? minu(impres[c].ldelay, impres[c].rdelay) : min_delay};
2021-05-14 10:15:42 +08:00
const uint ldelay{hrir_delay_round(impres[c].ldelay - base_delay)};
const uint rdelay{hrir_delay_round(impres[c].rdelay - base_delay)};
max_delay = maxu(max_delay, maxu(impres[c].ldelay, impres[c].rdelay) - base_delay);
for(size_t i{0u};i < mChannels.size();++i)
{
const double mult{AmbiMatrix[c][i]};
const size_t numirs{HrirLength - maxz(ldelay, rdelay)};
size_t lidx{ldelay}, ridx{rdelay};
for(size_t j{0};j < numirs;++j)
{
tmpres[i][lidx++][0] += hrir[j][0] * mult;
tmpres[i][ridx++][1] += hrir[j][1] * mult;
}
}
}
impres.clear();
for(size_t i{0u};i < mChannels.size();++i)
{
auto copy_arr = [](const double2 &in) noexcept -> float2
{ return float2{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
std::transform(tmpres[i].cbegin(), tmpres[i].cend(), mChannels[i].mCoeffs.begin(),
copy_arr);
}
tmpres.clear();
const uint max_length{minu(hrir_delay_round(max_delay) + irSize, HrirLength)};
TRACE("New max delay: %.2f, FIR length: %u\n", max_delay/double{HrirDelayFracOne},
max_length);
mIrSize = max_length;
}
namespace {
2023-02-04 15:03:54 +08:00
std::unique_ptr<HrtfStore> CreateHrtfStore(uint rate, uint8_t irSize,
2021-05-14 10:15:42 +08:00
const al::span<const HrtfStore::Field> fields,
const al::span<const HrtfStore::Elevation> elevs, const HrirArray *coeffs,
const ubyte2 *delays, const char *filename)
{
const size_t irCount{size_t{elevs.back().azCount} + elevs.back().irOffset};
size_t total{sizeof(HrtfStore)};
total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */
2023-02-04 15:03:54 +08:00
total += sizeof(std::declval<HrtfStore&>().mFields[0])*fields.size();
2021-05-14 10:15:42 +08:00
total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
2023-02-04 15:03:54 +08:00
total += sizeof(std::declval<HrtfStore&>().mElev[0])*elevs.size();
2021-05-14 10:15:42 +08:00
total = RoundUp(total, 16); /* Align for coefficients using SIMD */
2023-02-04 15:03:54 +08:00
total += sizeof(std::declval<HrtfStore&>().mCoeffs[0])*irCount;
total += sizeof(std::declval<HrtfStore&>().mDelays[0])*irCount;
2021-05-14 10:15:42 +08:00
2023-02-04 15:03:54 +08:00
std::unique_ptr<HrtfStore> Hrtf{};
if(void *ptr{al_calloc(16, total)})
2021-05-14 10:15:42 +08:00
{
2023-02-04 15:03:54 +08:00
Hrtf.reset(al::construct_at(static_cast<HrtfStore*>(ptr)));
2021-05-14 10:15:42 +08:00
InitRef(Hrtf->mRef, 1u);
Hrtf->mSampleRate = rate;
2023-02-04 15:03:54 +08:00
Hrtf->mIrSize = irSize;
2021-05-14 10:15:42 +08:00
/* Set up pointers to storage following the main HRTF struct. */
char *base = reinterpret_cast<char*>(Hrtf.get());
size_t offset{sizeof(HrtfStore)};
offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */
auto field_ = reinterpret_cast<HrtfStore::Field*>(base + offset);
offset += sizeof(field_[0])*fields.size();
offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
auto elev_ = reinterpret_cast<HrtfStore::Elevation*>(base + offset);
offset += sizeof(elev_[0])*elevs.size();
offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
auto coeffs_ = reinterpret_cast<HrirArray*>(base + offset);
offset += sizeof(coeffs_[0])*irCount;
auto delays_ = reinterpret_cast<ubyte2*>(base + offset);
offset += sizeof(delays_[0])*irCount;
2023-02-04 15:03:54 +08:00
if(offset != total)
2022-04-25 12:02:45 +08:00
throw std::runtime_error{"HrtfStore allocation size mismatch"};
2021-05-14 10:15:42 +08:00
/* Copy input data to storage. */
2022-04-25 12:02:45 +08:00
std::uninitialized_copy(fields.cbegin(), fields.cend(), field_);
std::uninitialized_copy(elevs.cbegin(), elevs.cend(), elev_);
std::uninitialized_copy_n(coeffs, irCount, coeffs_);
std::uninitialized_copy_n(delays, irCount, delays_);
2021-05-14 10:15:42 +08:00
/* Finally, assign the storage pointers. */
Hrtf->mFields = al::as_span(field_, fields.size());
2023-02-04 15:03:54 +08:00
Hrtf->mElev = elev_;
Hrtf->mCoeffs = coeffs_;
Hrtf->mDelays = delays_;
2021-05-14 10:15:42 +08:00
}
2023-02-04 15:03:54 +08:00
else
ERR("Out of memory allocating storage for %s.\n", filename);
2021-05-14 10:15:42 +08:00
return Hrtf;
}
void MirrorLeftHrirs(const al::span<const HrtfStore::Elevation> elevs, HrirArray *coeffs,
ubyte2 *delays)
{
for(const auto &elev : elevs)
{
const ushort evoffset{elev.irOffset};
const ushort azcount{elev.azCount};
for(size_t j{0};j < azcount;j++)
{
const size_t lidx{evoffset + j};
const size_t ridx{evoffset + ((azcount-j) % azcount)};
const size_t irSize{coeffs[ridx].size()};
for(size_t k{0};k < irSize;k++)
coeffs[ridx][k][1] = coeffs[lidx][k][0];
delays[ridx][1] = delays[lidx][0];
}
}
}
2022-04-25 12:02:45 +08:00
template<size_t num_bits, typename T>
constexpr std::enable_if_t<std::is_signed<T>::value && num_bits < sizeof(T)*8,
T> fixsign(T value) noexcept
{
constexpr auto signbit = static_cast<T>(1u << (num_bits-1));
return static_cast<T>((value^signbit) - signbit);
}
template<size_t num_bits, typename T>
constexpr std::enable_if_t<!std::is_signed<T>::value || num_bits == sizeof(T)*8,
T> fixsign(T value) noexcept
{ return value; }
2021-05-14 10:15:42 +08:00
template<typename T, size_t num_bits=sizeof(T)*8>
2022-04-25 12:02:45 +08:00
inline std::enable_if_t<al::endian::native == al::endian::little,
T> readle(std::istream &data)
2021-05-14 10:15:42 +08:00
{
static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8");
static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type");
T ret{};
2022-04-25 12:02:45 +08:00
if(!data.read(reinterpret_cast<char*>(&ret), num_bits/8))
return static_cast<T>(EOF);
2021-05-14 10:15:42 +08:00
2022-04-25 12:02:45 +08:00
return fixsign<num_bits>(ret);
}
template<typename T, size_t num_bits=sizeof(T)*8>
inline std::enable_if_t<al::endian::native == al::endian::big,
T> readle(std::istream &data)
{
static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8");
static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type");
T ret{};
al::byte b[sizeof(T)]{};
2022-04-25 12:02:45 +08:00
if(!data.read(reinterpret_cast<char*>(b), num_bits/8))
return static_cast<T>(EOF);
std::reverse_copy(std::begin(b), std::end(b), reinterpret_cast<al::byte*>(&ret));
2022-04-25 12:02:45 +08:00
return fixsign<num_bits>(ret);
2021-05-14 10:15:42 +08:00
}
template<>
inline uint8_t readle<uint8_t,8>(std::istream &data)
{ return static_cast<uint8_t>(data.get()); }
std::unique_ptr<HrtfStore> LoadHrtf00(std::istream &data, const char *filename)
{
uint rate{readle<uint32_t>(data)};
ushort irCount{readle<uint16_t>(data)};
ushort irSize{readle<uint16_t>(data)};
ubyte evCount{readle<uint8_t>(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(irSize < MinIrLength || irSize > HrirLength)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
return nullptr;
}
if(evCount < MinEvCount || evCount > MaxEvCount)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MinEvCount, MaxEvCount);
return nullptr;
}
auto elevs = al::vector<HrtfStore::Elevation>(evCount);
2021-05-14 10:15:42 +08:00
for(auto &elev : elevs)
elev.irOffset = readle<uint16_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{1};i < evCount;i++)
{
if(elevs[i].irOffset <= elevs[i-1].irOffset)
{
ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, elevs[i].irOffset,
elevs[i-1].irOffset);
return nullptr;
}
}
if(irCount <= elevs.back().irOffset)
{
ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
elevs.size()-1, elevs.back().irOffset, irCount);
return nullptr;
}
for(size_t i{1};i < evCount;i++)
{
elevs[i-1].azCount = static_cast<ushort>(elevs[i].irOffset - elevs[i-1].irOffset);
if(elevs[i-1].azCount < MinAzCount || elevs[i-1].azCount > MaxAzCount)
{
ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
i-1, elevs[i-1].azCount, MinAzCount, MaxAzCount);
return nullptr;
}
}
elevs.back().azCount = static_cast<ushort>(irCount - elevs.back().irOffset);
if(elevs.back().azCount < MinAzCount || elevs.back().azCount > MaxAzCount)
{
ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
elevs.size()-1, elevs.back().azCount, MinAzCount, MaxAzCount);
return nullptr;
}
auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
auto delays = al::vector<ubyte2>(irCount);
2021-05-14 10:15:42 +08:00
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = readle<int16_t>(data) / 32768.0f;
}
for(auto &val : delays)
val[0] = readle<uint8_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irCount;i++)
{
if(delays[i][0] > MaxHrirDelay)
{
ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
return nullptr;
}
delays[i][0] <<= HrirDelayFracBits;
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
const HrtfStore::Field field[1]{{0.0f, evCount}};
2023-02-04 15:03:54 +08:00
return CreateHrtfStore(rate, static_cast<uint8_t>(irSize), field, {elevs.data(), elevs.size()},
coeffs.data(), delays.data(), filename);
2021-05-14 10:15:42 +08:00
}
std::unique_ptr<HrtfStore> LoadHrtf01(std::istream &data, const char *filename)
{
uint rate{readle<uint32_t>(data)};
2023-02-04 15:03:54 +08:00
uint8_t irSize{readle<uint8_t>(data)};
2021-05-14 10:15:42 +08:00
ubyte evCount{readle<uint8_t>(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(irSize < MinIrLength || irSize > HrirLength)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
return nullptr;
}
if(evCount < MinEvCount || evCount > MaxEvCount)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MinEvCount, MaxEvCount);
return nullptr;
}
auto elevs = al::vector<HrtfStore::Elevation>(evCount);
2021-05-14 10:15:42 +08:00
for(auto &elev : elevs)
elev.azCount = readle<uint8_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < evCount;++i)
{
if(elevs[i].azCount < MinAzCount || elevs[i].azCount > MaxAzCount)
{
ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, elevs[i].azCount,
MinAzCount, MaxAzCount);
return nullptr;
}
}
elevs[0].irOffset = 0;
for(size_t i{1};i < evCount;i++)
elevs[i].irOffset = static_cast<ushort>(elevs[i-1].irOffset + elevs[i-1].azCount);
const ushort irCount{static_cast<ushort>(elevs.back().irOffset + elevs.back().azCount)};
auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
auto delays = al::vector<ubyte2>(irCount);
2021-05-14 10:15:42 +08:00
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = readle<int16_t>(data) / 32768.0f;
}
for(auto &val : delays)
val[0] = readle<uint8_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irCount;i++)
{
if(delays[i][0] > MaxHrirDelay)
{
ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
return nullptr;
}
delays[i][0] <<= HrirDelayFracBits;
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
const HrtfStore::Field field[1]{{0.0f, evCount}};
return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
delays.data(), filename);
}
std::unique_ptr<HrtfStore> LoadHrtf02(std::istream &data, const char *filename)
{
constexpr ubyte SampleType_S16{0};
constexpr ubyte SampleType_S24{1};
constexpr ubyte ChanType_LeftOnly{0};
constexpr ubyte ChanType_LeftRight{1};
uint rate{readle<uint32_t>(data)};
ubyte sampleType{readle<uint8_t>(data)};
ubyte channelType{readle<uint8_t>(data)};
2023-02-04 15:03:54 +08:00
uint8_t irSize{readle<uint8_t>(data)};
2021-05-14 10:15:42 +08:00
ubyte fdCount{readle<uint8_t>(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(sampleType > SampleType_S24)
{
ERR("Unsupported sample type: %d\n", sampleType);
return nullptr;
}
if(channelType > ChanType_LeftRight)
{
ERR("Unsupported channel type: %d\n", channelType);
return nullptr;
}
if(irSize < MinIrLength || irSize > HrirLength)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
return nullptr;
}
if(fdCount < 1 || fdCount > MaxFdCount)
{
ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
MaxFdCount);
return nullptr;
}
auto fields = al::vector<HrtfStore::Field>(fdCount);
auto elevs = al::vector<HrtfStore::Elevation>{};
2021-05-14 10:15:42 +08:00
for(size_t f{0};f < fdCount;f++)
{
const ushort distance{readle<uint16_t>(data)};
const ubyte evCount{readle<uint8_t>(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(distance < MinFdDistance || distance > MaxFdDistance)
{
ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
MinFdDistance, MaxFdDistance);
return nullptr;
}
if(evCount < MinEvCount || evCount > MaxEvCount)
{
ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
MinEvCount, MaxEvCount);
return nullptr;
}
fields[f].distance = distance / 1000.0f;
fields[f].evCount = evCount;
if(f > 0 && fields[f].distance <= fields[f-1].distance)
{
ERR("Field distance[%zu] is not after previous (%f > %f)\n", f, fields[f].distance,
fields[f-1].distance);
return nullptr;
}
const size_t ebase{elevs.size()};
elevs.resize(ebase + evCount);
for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
elev.azCount = readle<uint8_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t e{0};e < evCount;e++)
{
if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
{
ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
return nullptr;
}
}
}
elevs[0].irOffset = 0;
std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
-> HrtfStore::Elevation
{
return HrtfStore::Elevation{cur.azCount,
static_cast<ushort>(last.azCount + last.irOffset)};
});
const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
auto delays = al::vector<ubyte2>(irTotal);
2021-05-14 10:15:42 +08:00
if(channelType == ChanType_LeftOnly)
{
if(sampleType == SampleType_S16)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = readle<int16_t>(data) / 32768.0f;
}
}
else if(sampleType == SampleType_S24)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
}
}
for(auto &val : delays)
val[0] = readle<uint8_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MaxHrirDelay)
{
ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
return nullptr;
}
delays[i][0] <<= HrirDelayFracBits;
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
}
else if(channelType == ChanType_LeftRight)
{
if(sampleType == SampleType_S16)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
{
val[0] = readle<int16_t>(data) / 32768.0f;
val[1] = readle<int16_t>(data) / 32768.0f;
}
}
}
else if(sampleType == SampleType_S24)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
{
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
}
}
}
for(auto &val : delays)
{
val[0] = readle<uint8_t>(data);
val[1] = readle<uint8_t>(data);
}
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MaxHrirDelay)
{
ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
return nullptr;
}
if(delays[i][1] > MaxHrirDelay)
{
ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MaxHrirDelay);
return nullptr;
}
delays[i][0] <<= HrirDelayFracBits;
delays[i][1] <<= HrirDelayFracBits;
}
}
if(fdCount > 1)
{
auto fields_ = al::vector<HrtfStore::Field>(fields.size());
auto elevs_ = al::vector<HrtfStore::Elevation>(elevs.size());
auto coeffs_ = al::vector<HrirArray>(coeffs.size());
auto delays_ = al::vector<ubyte2>(delays.size());
2021-05-14 10:15:42 +08:00
/* Simple reverse for the per-field elements. */
std::reverse_copy(fields.cbegin(), fields.cend(), fields_.begin());
/* Each field has a group of elevations, which each have an azimuth
* count. Reverse the order of the groups, keeping the relative order
* of per-group azimuth counts.
*/
auto elevs__end = elevs_.end();
auto copy_azs = [&elevs,&elevs__end](const ptrdiff_t ebase, const HrtfStore::Field &field)
-> ptrdiff_t
{
auto elevs_src = elevs.begin()+ebase;
elevs__end = std::copy_backward(elevs_src, elevs_src+field.evCount, elevs__end);
return ebase + field.evCount;
};
(void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_azs);
assert(elevs_.begin() == elevs__end);
/* Reestablish the IR offset for each elevation index, given the new
* ordering of elevations.
*/
elevs_[0].irOffset = 0;
std::partial_sum(elevs_.cbegin(), elevs_.cend(), elevs_.begin(),
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
-> HrtfStore::Elevation
{
return HrtfStore::Elevation{cur.azCount,
static_cast<ushort>(last.azCount + last.irOffset)};
});
/* Reverse the order of each field's group of IRs. */
auto coeffs_end = coeffs_.end();
auto delays_end = delays_.end();
auto copy_irs = [&elevs,&coeffs,&delays,&coeffs_end,&delays_end](
const ptrdiff_t ebase, const HrtfStore::Field &field) -> ptrdiff_t
{
auto accum_az = [](int count, const HrtfStore::Elevation &elev) noexcept -> int
{ return count + elev.azCount; };
const auto elevs_mid = elevs.cbegin() + ebase;
const auto elevs_end = elevs_mid + field.evCount;
const int abase{std::accumulate(elevs.cbegin(), elevs_mid, 0, accum_az)};
const int num_azs{std::accumulate(elevs_mid, elevs_end, 0, accum_az)};
coeffs_end = std::copy_backward(coeffs.cbegin() + abase,
coeffs.cbegin() + (abase+num_azs), coeffs_end);
delays_end = std::copy_backward(delays.cbegin() + abase,
delays.cbegin() + (abase+num_azs), delays_end);
return ebase + field.evCount;
};
(void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_irs);
assert(coeffs_.begin() == coeffs_end);
assert(delays_.begin() == delays_end);
fields = std::move(fields_);
elevs = std::move(elevs_);
coeffs = std::move(coeffs_);
delays = std::move(delays_);
}
return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
{elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
}
std::unique_ptr<HrtfStore> LoadHrtf03(std::istream &data, const char *filename)
{
constexpr ubyte ChanType_LeftOnly{0};
constexpr ubyte ChanType_LeftRight{1};
uint rate{readle<uint32_t>(data)};
ubyte channelType{readle<uint8_t>(data)};
2023-02-04 15:03:54 +08:00
uint8_t irSize{readle<uint8_t>(data)};
2021-05-14 10:15:42 +08:00
ubyte fdCount{readle<uint8_t>(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(channelType > ChanType_LeftRight)
{
ERR("Unsupported channel type: %d\n", channelType);
return nullptr;
}
if(irSize < MinIrLength || irSize > HrirLength)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
return nullptr;
}
if(fdCount < 1 || fdCount > MaxFdCount)
{
ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
MaxFdCount);
return nullptr;
}
auto fields = al::vector<HrtfStore::Field>(fdCount);
auto elevs = al::vector<HrtfStore::Elevation>{};
2021-05-14 10:15:42 +08:00
for(size_t f{0};f < fdCount;f++)
{
const ushort distance{readle<uint16_t>(data)};
const ubyte evCount{readle<uint8_t>(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(distance < MinFdDistance || distance > MaxFdDistance)
{
ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
MinFdDistance, MaxFdDistance);
return nullptr;
}
if(evCount < MinEvCount || evCount > MaxEvCount)
{
ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
MinEvCount, MaxEvCount);
return nullptr;
}
fields[f].distance = distance / 1000.0f;
fields[f].evCount = evCount;
if(f > 0 && fields[f].distance > fields[f-1].distance)
{
ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f, fields[f].distance,
fields[f-1].distance);
return nullptr;
}
const size_t ebase{elevs.size()};
elevs.resize(ebase + evCount);
for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
elev.azCount = readle<uint8_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t e{0};e < evCount;e++)
{
if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
{
ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
return nullptr;
}
}
}
elevs[0].irOffset = 0;
std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
-> HrtfStore::Elevation
{
return HrtfStore::Elevation{cur.azCount,
static_cast<ushort>(last.azCount + last.irOffset)};
});
const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
auto delays = al::vector<ubyte2>(irTotal);
2021-05-14 10:15:42 +08:00
if(channelType == ChanType_LeftOnly)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
}
for(auto &val : delays)
val[0] = readle<uint8_t>(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
{
ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
return nullptr;
}
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
}
else if(channelType == ChanType_LeftRight)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
{
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
}
}
for(auto &val : delays)
{
val[0] = readle<uint8_t>(data);
val[1] = readle<uint8_t>(data);
}
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
{
ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
return nullptr;
}
if(delays[i][1] > MaxHrirDelay<<HrirDelayFracBits)
{
ERR("Invalid delays[%zu][1]: %f (%d)\n", i,
delays[i][1] / float{HrirDelayFracOne}, MaxHrirDelay);
return nullptr;
}
}
}
return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
{elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
}
bool checkName(const std::string &name)
{
auto match_name = [&name](const HrtfEntry &entry) -> bool { return name == entry.mDispName; };
auto &enum_names = EnumeratedHrtfs;
return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend();
}
void AddFileEntry(const std::string &filename)
{
/* Check if this file has already been enumerated. */
auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
[&filename](const HrtfEntry &entry) -> bool
{ return entry.mFilename == filename; });
if(enum_iter != EnumeratedHrtfs.cend())
{
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
return;
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
size_t namepos{filename.find_last_of('/')+1};
if(!namepos) namepos = filename.find_last_of('\\')+1;
size_t extpos{filename.find_last_of('.')};
if(extpos <= namepos) extpos = std::string::npos;
const std::string basename{(extpos == std::string::npos) ?
filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
std::string newname{basename};
int count{1};
while(checkName(newname))
{
newname = basename;
newname += " #";
newname += std::to_string(++count);
}
EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
const HrtfEntry &entry = EnumeratedHrtfs.back();
TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str());
}
/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
* for input instead of opening the given filename.
*/
void AddBuiltInEntry(const std::string &dispname, uint residx)
{
const std::string filename{'!'+std::to_string(residx)+'_'+dispname};
auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
[&filename](const HrtfEntry &entry) -> bool
{ return entry.mFilename == filename; });
if(enum_iter != EnumeratedHrtfs.cend())
{
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
return;
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
std::string newname{dispname};
int count{1};
while(checkName(newname))
{
newname = dispname;
newname += " #";
newname += std::to_string(++count);
}
EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
const HrtfEntry &entry = EnumeratedHrtfs.back();
TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str());
}
#define IDR_DEFAULT_HRTF_MHR 1
#ifndef ALSOFT_EMBED_HRTF_DATA
al::span<const char> GetResource(int /*name*/)
{ return {}; }
#else
2023-02-04 15:03:54 +08:00
constexpr unsigned char hrtf_default[]{
#include "default_hrtf.txt"
};
2021-05-14 10:15:42 +08:00
al::span<const char> GetResource(int name)
{
if(name == IDR_DEFAULT_HRTF_MHR)
return {reinterpret_cast<const char*>(hrtf_default), sizeof(hrtf_default)};
return {};
}
#endif
} // namespace
al::vector<std::string> EnumerateHrtf(al::optional<std::string> pathopt)
2021-05-14 10:15:42 +08:00
{
std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
EnumeratedHrtfs.clear();
bool usedefaults{true};
if(pathopt)
{
const char *pathlist{pathopt->c_str()};
while(pathlist && *pathlist)
{
const char *next, *end;
while(isspace(*pathlist) || *pathlist == ',')
pathlist++;
if(*pathlist == '\0')
continue;
next = strchr(pathlist, ',');
if(next)
end = next++;
else
{
end = pathlist + strlen(pathlist);
usedefaults = false;
}
while(end != pathlist && isspace(*(end-1)))
--end;
if(end != pathlist)
{
const std::string pname{pathlist, end};
for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
AddFileEntry(fname);
}
pathlist = next;
}
}
if(usedefaults)
{
for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
AddFileEntry(fname);
if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty())
AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR);
}
al::vector<std::string> list;
2021-05-14 10:15:42 +08:00
list.reserve(EnumeratedHrtfs.size());
for(auto &entry : EnumeratedHrtfs)
list.emplace_back(entry.mDispName);
return list;
}
HrtfStorePtr GetLoadedHrtf(const std::string &name, const uint devrate)
{
std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
[&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; });
if(entry_iter == EnumeratedHrtfs.cend())
return nullptr;
const std::string &fname = entry_iter->mFilename;
std::lock_guard<std::mutex> __{LoadedHrtfLock};
auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool
{ return hrtf.mFilename < filename; };
auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname);
while(handle != LoadedHrtfs.end() && handle->mFilename == fname)
{
HrtfStore *hrtf{handle->mEntry.get()};
2023-02-04 15:03:54 +08:00
if(hrtf && hrtf->mSampleRate == devrate)
2021-05-14 10:15:42 +08:00
{
hrtf->add_ref();
return HrtfStorePtr{hrtf};
}
++handle;
}
std::unique_ptr<std::istream> stream;
int residx{};
char ch{};
if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_')
{
TRACE("Loading %s...\n", fname.c_str());
al::span<const char> res{GetResource(residx)};
if(res.empty())
{
ERR("Could not get resource %u, %s\n", residx, name.c_str());
return nullptr;
}
stream = std::make_unique<idstream>(res.begin(), res.end());
}
else
{
TRACE("Loading %s...\n", fname.c_str());
auto fstr = std::make_unique<al::ifstream>(fname.c_str(), std::ios::binary);
if(!fstr->is_open())
{
ERR("Could not open %s\n", fname.c_str());
return nullptr;
}
stream = std::move(fstr);
}
std::unique_ptr<HrtfStore> hrtf;
char magic[sizeof(magicMarker03)];
stream->read(magic, sizeof(magic));
if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker03)))
ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount());
else if(memcmp(magic, magicMarker03, sizeof(magicMarker03)) == 0)
{
TRACE("Detected data set format v3\n");
hrtf = LoadHrtf03(*stream, name.c_str());
}
else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
{
TRACE("Detected data set format v2\n");
hrtf = LoadHrtf02(*stream, name.c_str());
}
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01(*stream, name.c_str());
}
else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00(*stream, name.c_str());
}
else
ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic);
stream.reset();
if(!hrtf)
{
ERR("Failed to load %s\n", name.c_str());
return nullptr;
}
2023-02-04 15:03:54 +08:00
if(hrtf->mSampleRate != devrate)
2021-05-14 10:15:42 +08:00
{
2023-02-04 15:03:54 +08:00
TRACE("Resampling HRTF %s (%uhz -> %uhz)\n", name.c_str(), hrtf->mSampleRate, devrate);
2021-05-14 10:15:42 +08:00
/* Calculate the last elevation's index and get the total IR count. */
2023-02-04 15:03:54 +08:00
const size_t lastEv{std::accumulate(hrtf->mFields.begin(), hrtf->mFields.end(), size_t{0},
2021-05-14 10:15:42 +08:00
[](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t
{ return curval + field.evCount; }
) - 1};
2023-02-04 15:03:54 +08:00
const size_t irCount{size_t{hrtf->mElev[lastEv].irOffset} + hrtf->mElev[lastEv].azCount};
2021-05-14 10:15:42 +08:00
/* Resample all the IRs. */
std::array<std::array<double,HrirLength>,2> inout;
PPhaseResampler rs;
2023-02-04 15:03:54 +08:00
rs.init(hrtf->mSampleRate, devrate);
2021-05-14 10:15:42 +08:00
for(size_t i{0};i < irCount;++i)
{
2023-02-04 15:03:54 +08:00
HrirArray &coeffs = const_cast<HrirArray&>(hrtf->mCoeffs[i]);
2021-05-14 10:15:42 +08:00
for(size_t j{0};j < 2;++j)
{
std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(),
[j](const float2 &in) noexcept -> double { return in[j]; });
rs.process(HrirLength, inout[0].data(), HrirLength, inout[1].data());
for(size_t k{0};k < HrirLength;++k)
coeffs[k][j] = static_cast<float>(inout[1][k]);
}
}
rs = {};
/* Scale the delays for the new sample rate. */
float max_delay{0.0f};
auto new_delays = al::vector<float2>(irCount);
2023-02-04 15:03:54 +08:00
const float rate_scale{static_cast<float>(devrate)/static_cast<float>(hrtf->mSampleRate)};
2021-05-14 10:15:42 +08:00
for(size_t i{0};i < irCount;++i)
{
for(size_t j{0};j < 2;++j)
{
2023-02-04 15:03:54 +08:00
const float new_delay{std::round(hrtf->mDelays[i][j] * rate_scale) /
2021-05-14 10:15:42 +08:00
float{HrirDelayFracOne}};
max_delay = maxf(max_delay, new_delay);
new_delays[i][j] = new_delay;
}
}
/* If the new delays exceed the max, scale it down to fit (essentially
* shrinking the head radius; not ideal but better than a per-delay
* clamp).
*/
float delay_scale{HrirDelayFracOne};
if(max_delay > MaxHrirDelay)
{
WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay, MaxHrirDelay);
delay_scale *= float{MaxHrirDelay} / max_delay;
}
for(size_t i{0};i < irCount;++i)
{
2023-02-04 15:03:54 +08:00
ubyte2 &delays = const_cast<ubyte2&>(hrtf->mDelays[i]);
2021-05-14 10:15:42 +08:00
for(size_t j{0};j < 2;++j)
delays[j] = static_cast<ubyte>(float2int(new_delays[i][j]*delay_scale + 0.5f));
}
/* Scale the IR size for the new sample rate and update the stored
* sample rate.
*/
2023-02-04 15:03:54 +08:00
const float newIrSize{std::round(static_cast<float>(hrtf->mIrSize) * rate_scale)};
hrtf->mIrSize = static_cast<uint8_t>(minf(HrirLength, newIrSize));
hrtf->mSampleRate = devrate;
2021-05-14 10:15:42 +08:00
}
TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(),
2023-02-04 15:03:54 +08:00
hrtf->mSampleRate, hrtf->mIrSize);
handle = LoadedHrtfs.emplace(handle, fname, std::move(hrtf));
2021-05-14 10:15:42 +08:00
return HrtfStorePtr{handle->mEntry.get()};
}
void HrtfStore::add_ref()
{
auto ref = IncrementRef(mRef);
TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
}
2023-02-04 15:03:54 +08:00
void HrtfStore::dec_ref()
2021-05-14 10:15:42 +08:00
{
auto ref = DecrementRef(mRef);
TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
if(ref == 0)
{
std::lock_guard<std::mutex> _{LoadedHrtfLock};
/* Go through and remove all unused HRTFs. */
auto remove_unused = [](LoadedHrtf &hrtf) -> bool
{
HrtfStore *entry{hrtf.mEntry.get()};
if(entry && ReadRef(entry->mRef) == 0)
{
TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data());
hrtf.mEntry = nullptr;
return true;
}
return false;
};
auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused);
LoadedHrtfs.erase(iter, LoadedHrtfs.end());
}
}