mirror of https://github.com/axmolengine/axmol.git
424 lines
11 KiB
C
424 lines
11 KiB
C
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
|
||
|
Written by: Marcus Hennix
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Overview:
|
||
|
|
||
|
btConeTwistConstraint can be used to simulate ragdoll joints (upper arm, leg etc).
|
||
|
It is a fixed translation, 3 degree-of-freedom (DOF) rotational "joint".
|
||
|
It divides the 3 rotational DOFs into swing (movement within a cone) and twist.
|
||
|
Swing is divided into swing1 and swing2 which can have different limits, giving an elliptical shape.
|
||
|
(Note: the cone's base isn't flat, so this ellipse is "embedded" on the surface of a sphere.)
|
||
|
|
||
|
In the contraint's frame of reference:
|
||
|
twist is along the x-axis,
|
||
|
and swing 1 and 2 are along the z and y axes respectively.
|
||
|
*/
|
||
|
|
||
|
#ifndef BT_CONETWISTCONSTRAINT_H
|
||
|
#define BT_CONETWISTCONSTRAINT_H
|
||
|
|
||
|
#include "LinearMath/btVector3.h"
|
||
|
#include "btJacobianEntry.h"
|
||
|
#include "btTypedConstraint.h"
|
||
|
|
||
|
#ifdef BT_USE_DOUBLE_PRECISION
|
||
|
#define btConeTwistConstraintData2 btConeTwistConstraintDoubleData
|
||
|
#define btConeTwistConstraintDataName "btConeTwistConstraintDoubleData"
|
||
|
#else
|
||
|
#define btConeTwistConstraintData2 btConeTwistConstraintData
|
||
|
#define btConeTwistConstraintDataName "btConeTwistConstraintData"
|
||
|
#endif //BT_USE_DOUBLE_PRECISION
|
||
|
|
||
|
class btRigidBody;
|
||
|
|
||
|
enum btConeTwistFlags
|
||
|
{
|
||
|
BT_CONETWIST_FLAGS_LIN_CFM = 1,
|
||
|
BT_CONETWIST_FLAGS_LIN_ERP = 2,
|
||
|
BT_CONETWIST_FLAGS_ANG_CFM = 4
|
||
|
};
|
||
|
|
||
|
///btConeTwistConstraint can be used to simulate ragdoll joints (upper arm, leg etc)
|
||
|
ATTRIBUTE_ALIGNED16(class)
|
||
|
btConeTwistConstraint : public btTypedConstraint
|
||
|
{
|
||
|
#ifdef IN_PARALLELL_SOLVER
|
||
|
public:
|
||
|
#endif
|
||
|
btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
|
||
|
|
||
|
btTransform m_rbAFrame;
|
||
|
btTransform m_rbBFrame;
|
||
|
|
||
|
btScalar m_limitSoftness;
|
||
|
btScalar m_biasFactor;
|
||
|
btScalar m_relaxationFactor;
|
||
|
|
||
|
btScalar m_damping;
|
||
|
|
||
|
btScalar m_swingSpan1;
|
||
|
btScalar m_swingSpan2;
|
||
|
btScalar m_twistSpan;
|
||
|
|
||
|
btScalar m_fixThresh;
|
||
|
|
||
|
btVector3 m_swingAxis;
|
||
|
btVector3 m_twistAxis;
|
||
|
|
||
|
btScalar m_kSwing;
|
||
|
btScalar m_kTwist;
|
||
|
|
||
|
btScalar m_twistLimitSign;
|
||
|
btScalar m_swingCorrection;
|
||
|
btScalar m_twistCorrection;
|
||
|
|
||
|
btScalar m_twistAngle;
|
||
|
|
||
|
btScalar m_accSwingLimitImpulse;
|
||
|
btScalar m_accTwistLimitImpulse;
|
||
|
|
||
|
bool m_angularOnly;
|
||
|
bool m_solveTwistLimit;
|
||
|
bool m_solveSwingLimit;
|
||
|
|
||
|
bool m_useSolveConstraintObsolete;
|
||
|
|
||
|
// not yet used...
|
||
|
btScalar m_swingLimitRatio;
|
||
|
btScalar m_twistLimitRatio;
|
||
|
btVector3 m_twistAxisA;
|
||
|
|
||
|
// motor
|
||
|
bool m_bMotorEnabled;
|
||
|
bool m_bNormalizedMotorStrength;
|
||
|
btQuaternion m_qTarget;
|
||
|
btScalar m_maxMotorImpulse;
|
||
|
btVector3 m_accMotorImpulse;
|
||
|
|
||
|
// parameters
|
||
|
int m_flags;
|
||
|
btScalar m_linCFM;
|
||
|
btScalar m_linERP;
|
||
|
btScalar m_angCFM;
|
||
|
|
||
|
protected:
|
||
|
void init();
|
||
|
|
||
|
void computeConeLimitInfo(const btQuaternion& qCone, // in
|
||
|
btScalar& swingAngle, btVector3& vSwingAxis, btScalar& swingLimit); // all outs
|
||
|
|
||
|
void computeTwistLimitInfo(const btQuaternion& qTwist, // in
|
||
|
btScalar& twistAngle, btVector3& vTwistAxis); // all outs
|
||
|
|
||
|
void adjustSwingAxisToUseEllipseNormal(btVector3 & vSwingAxis) const;
|
||
|
|
||
|
public:
|
||
|
BT_DECLARE_ALIGNED_ALLOCATOR();
|
||
|
|
||
|
btConeTwistConstraint(btRigidBody & rbA, btRigidBody & rbB, const btTransform& rbAFrame, const btTransform& rbBFrame);
|
||
|
|
||
|
btConeTwistConstraint(btRigidBody & rbA, const btTransform& rbAFrame);
|
||
|
|
||
|
virtual void buildJacobian();
|
||
|
|
||
|
virtual void getInfo1(btConstraintInfo1 * info);
|
||
|
|
||
|
void getInfo1NonVirtual(btConstraintInfo1 * info);
|
||
|
|
||
|
virtual void getInfo2(btConstraintInfo2 * info);
|
||
|
|
||
|
void getInfo2NonVirtual(btConstraintInfo2 * info, const btTransform& transA, const btTransform& transB, const btMatrix3x3& invInertiaWorldA, const btMatrix3x3& invInertiaWorldB);
|
||
|
|
||
|
virtual void solveConstraintObsolete(btSolverBody & bodyA, btSolverBody & bodyB, btScalar timeStep);
|
||
|
|
||
|
void updateRHS(btScalar timeStep);
|
||
|
|
||
|
const btRigidBody& getRigidBodyA() const
|
||
|
{
|
||
|
return m_rbA;
|
||
|
}
|
||
|
const btRigidBody& getRigidBodyB() const
|
||
|
{
|
||
|
return m_rbB;
|
||
|
}
|
||
|
|
||
|
void setAngularOnly(bool angularOnly)
|
||
|
{
|
||
|
m_angularOnly = angularOnly;
|
||
|
}
|
||
|
|
||
|
bool getAngularOnly() const
|
||
|
{
|
||
|
return m_angularOnly;
|
||
|
}
|
||
|
|
||
|
void setLimit(int limitIndex, btScalar limitValue)
|
||
|
{
|
||
|
switch (limitIndex)
|
||
|
{
|
||
|
case 3:
|
||
|
{
|
||
|
m_twistSpan = limitValue;
|
||
|
break;
|
||
|
}
|
||
|
case 4:
|
||
|
{
|
||
|
m_swingSpan2 = limitValue;
|
||
|
break;
|
||
|
}
|
||
|
case 5:
|
||
|
{
|
||
|
m_swingSpan1 = limitValue;
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
btScalar getLimit(int limitIndex) const
|
||
|
{
|
||
|
switch (limitIndex)
|
||
|
{
|
||
|
case 3:
|
||
|
{
|
||
|
return m_twistSpan;
|
||
|
break;
|
||
|
}
|
||
|
case 4:
|
||
|
{
|
||
|
return m_swingSpan2;
|
||
|
break;
|
||
|
}
|
||
|
case 5:
|
||
|
{
|
||
|
return m_swingSpan1;
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
btAssert(0 && "Invalid limitIndex specified for btConeTwistConstraint");
|
||
|
return 0.0;
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
// setLimit(), a few notes:
|
||
|
// _softness:
|
||
|
// 0->1, recommend ~0.8->1.
|
||
|
// describes % of limits where movement is free.
|
||
|
// beyond this softness %, the limit is gradually enforced until the "hard" (1.0) limit is reached.
|
||
|
// _biasFactor:
|
||
|
// 0->1?, recommend 0.3 +/-0.3 or so.
|
||
|
// strength with which constraint resists zeroth order (angular, not angular velocity) limit violation.
|
||
|
// __relaxationFactor:
|
||
|
// 0->1, recommend to stay near 1.
|
||
|
// the lower the value, the less the constraint will fight velocities which violate the angular limits.
|
||
|
void setLimit(btScalar _swingSpan1, btScalar _swingSpan2, btScalar _twistSpan, btScalar _softness = 1.f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
|
||
|
{
|
||
|
m_swingSpan1 = _swingSpan1;
|
||
|
m_swingSpan2 = _swingSpan2;
|
||
|
m_twistSpan = _twistSpan;
|
||
|
|
||
|
m_limitSoftness = _softness;
|
||
|
m_biasFactor = _biasFactor;
|
||
|
m_relaxationFactor = _relaxationFactor;
|
||
|
}
|
||
|
|
||
|
const btTransform& getAFrame() const { return m_rbAFrame; };
|
||
|
const btTransform& getBFrame() const { return m_rbBFrame; };
|
||
|
|
||
|
inline int getSolveTwistLimit()
|
||
|
{
|
||
|
return m_solveTwistLimit;
|
||
|
}
|
||
|
|
||
|
inline int getSolveSwingLimit()
|
||
|
{
|
||
|
return m_solveSwingLimit;
|
||
|
}
|
||
|
|
||
|
inline btScalar getTwistLimitSign()
|
||
|
{
|
||
|
return m_twistLimitSign;
|
||
|
}
|
||
|
|
||
|
void calcAngleInfo();
|
||
|
void calcAngleInfo2(const btTransform& transA, const btTransform& transB, const btMatrix3x3& invInertiaWorldA, const btMatrix3x3& invInertiaWorldB);
|
||
|
|
||
|
inline btScalar getSwingSpan1() const
|
||
|
{
|
||
|
return m_swingSpan1;
|
||
|
}
|
||
|
inline btScalar getSwingSpan2() const
|
||
|
{
|
||
|
return m_swingSpan2;
|
||
|
}
|
||
|
inline btScalar getTwistSpan() const
|
||
|
{
|
||
|
return m_twistSpan;
|
||
|
}
|
||
|
inline btScalar getLimitSoftness() const
|
||
|
{
|
||
|
return m_limitSoftness;
|
||
|
}
|
||
|
inline btScalar getBiasFactor() const
|
||
|
{
|
||
|
return m_biasFactor;
|
||
|
}
|
||
|
inline btScalar getRelaxationFactor() const
|
||
|
{
|
||
|
return m_relaxationFactor;
|
||
|
}
|
||
|
inline btScalar getTwistAngle() const
|
||
|
{
|
||
|
return m_twistAngle;
|
||
|
}
|
||
|
bool isPastSwingLimit() { return m_solveSwingLimit; }
|
||
|
|
||
|
btScalar getDamping() const { return m_damping; }
|
||
|
void setDamping(btScalar damping) { m_damping = damping; }
|
||
|
|
||
|
void enableMotor(bool b) { m_bMotorEnabled = b; }
|
||
|
bool isMotorEnabled() const { return m_bMotorEnabled; }
|
||
|
btScalar getMaxMotorImpulse() const { return m_maxMotorImpulse; }
|
||
|
bool isMaxMotorImpulseNormalized() const { return m_bNormalizedMotorStrength; }
|
||
|
void setMaxMotorImpulse(btScalar maxMotorImpulse)
|
||
|
{
|
||
|
m_maxMotorImpulse = maxMotorImpulse;
|
||
|
m_bNormalizedMotorStrength = false;
|
||
|
}
|
||
|
void setMaxMotorImpulseNormalized(btScalar maxMotorImpulse)
|
||
|
{
|
||
|
m_maxMotorImpulse = maxMotorImpulse;
|
||
|
m_bNormalizedMotorStrength = true;
|
||
|
}
|
||
|
|
||
|
btScalar getFixThresh() { return m_fixThresh; }
|
||
|
void setFixThresh(btScalar fixThresh) { m_fixThresh = fixThresh; }
|
||
|
|
||
|
// setMotorTarget:
|
||
|
// q: the desired rotation of bodyA wrt bodyB.
|
||
|
// note: if q violates the joint limits, the internal target is clamped to avoid conflicting impulses (very bad for stability)
|
||
|
// note: don't forget to enableMotor()
|
||
|
void setMotorTarget(const btQuaternion& q);
|
||
|
const btQuaternion& getMotorTarget() const { return m_qTarget; }
|
||
|
|
||
|
// same as above, but q is the desired rotation of frameA wrt frameB in constraint space
|
||
|
void setMotorTargetInConstraintSpace(const btQuaternion& q);
|
||
|
|
||
|
btVector3 GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const;
|
||
|
|
||
|
///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
|
||
|
///If no axis is provided, it uses the default axis for this constraint.
|
||
|
virtual void setParam(int num, btScalar value, int axis = -1);
|
||
|
|
||
|
virtual void setFrames(const btTransform& frameA, const btTransform& frameB);
|
||
|
|
||
|
const btTransform& getFrameOffsetA() const
|
||
|
{
|
||
|
return m_rbAFrame;
|
||
|
}
|
||
|
|
||
|
const btTransform& getFrameOffsetB() const
|
||
|
{
|
||
|
return m_rbBFrame;
|
||
|
}
|
||
|
|
||
|
///return the local value of parameter
|
||
|
virtual btScalar getParam(int num, int axis = -1) const;
|
||
|
|
||
|
int getFlags() const
|
||
|
{
|
||
|
return m_flags;
|
||
|
}
|
||
|
|
||
|
virtual int calculateSerializeBufferSize() const;
|
||
|
|
||
|
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
||
|
virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
|
||
|
};
|
||
|
|
||
|
struct btConeTwistConstraintDoubleData
|
||
|
{
|
||
|
btTypedConstraintDoubleData m_typeConstraintData;
|
||
|
btTransformDoubleData m_rbAFrame;
|
||
|
btTransformDoubleData m_rbBFrame;
|
||
|
|
||
|
//limits
|
||
|
double m_swingSpan1;
|
||
|
double m_swingSpan2;
|
||
|
double m_twistSpan;
|
||
|
double m_limitSoftness;
|
||
|
double m_biasFactor;
|
||
|
double m_relaxationFactor;
|
||
|
|
||
|
double m_damping;
|
||
|
};
|
||
|
|
||
|
#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
|
||
|
///this structure is not used, except for loading pre-2.82 .bullet files
|
||
|
struct btConeTwistConstraintData
|
||
|
{
|
||
|
btTypedConstraintData m_typeConstraintData;
|
||
|
btTransformFloatData m_rbAFrame;
|
||
|
btTransformFloatData m_rbBFrame;
|
||
|
|
||
|
//limits
|
||
|
float m_swingSpan1;
|
||
|
float m_swingSpan2;
|
||
|
float m_twistSpan;
|
||
|
float m_limitSoftness;
|
||
|
float m_biasFactor;
|
||
|
float m_relaxationFactor;
|
||
|
|
||
|
float m_damping;
|
||
|
|
||
|
char m_pad[4];
|
||
|
};
|
||
|
#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
|
||
|
//
|
||
|
|
||
|
SIMD_FORCE_INLINE int btConeTwistConstraint::calculateSerializeBufferSize() const
|
||
|
{
|
||
|
return sizeof(btConeTwistConstraintData2);
|
||
|
}
|
||
|
|
||
|
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
||
|
SIMD_FORCE_INLINE const char* btConeTwistConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
|
||
|
{
|
||
|
btConeTwistConstraintData2* cone = (btConeTwistConstraintData2*)dataBuffer;
|
||
|
btTypedConstraint::serialize(&cone->m_typeConstraintData, serializer);
|
||
|
|
||
|
m_rbAFrame.serialize(cone->m_rbAFrame);
|
||
|
m_rbBFrame.serialize(cone->m_rbBFrame);
|
||
|
|
||
|
cone->m_swingSpan1 = m_swingSpan1;
|
||
|
cone->m_swingSpan2 = m_swingSpan2;
|
||
|
cone->m_twistSpan = m_twistSpan;
|
||
|
cone->m_limitSoftness = m_limitSoftness;
|
||
|
cone->m_biasFactor = m_biasFactor;
|
||
|
cone->m_relaxationFactor = m_relaxationFactor;
|
||
|
cone->m_damping = m_damping;
|
||
|
|
||
|
return btConeTwistConstraintDataName;
|
||
|
}
|
||
|
|
||
|
#endif //BT_CONETWISTCONSTRAINT_H
|