axmol/3rdparty/openal/common/alnumeric.h

294 lines
9.0 KiB
C
Raw Normal View History

#ifndef AL_NUMERIC_H
#define AL_NUMERIC_H
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#ifdef HAVE_INTRIN_H
#include <intrin.h>
#endif
#ifdef HAVE_SSE_INTRINSICS
#include <xmmintrin.h>
#endif
#include "albit.h"
#include "altraits.h"
#include "opthelpers.h"
constexpr auto operator "" _i64(unsigned long long n) noexcept { return static_cast<int64_t>(n); }
constexpr auto operator "" _u64(unsigned long long n) noexcept { return static_cast<uint64_t>(n); }
constexpr auto operator "" _z(unsigned long long n) noexcept
{ return static_cast<std::make_signed_t<size_t>>(n); }
constexpr auto operator "" _uz(unsigned long long n) noexcept { return static_cast<size_t>(n); }
constexpr auto operator "" _zu(unsigned long long n) noexcept { return static_cast<size_t>(n); }
constexpr inline float minf(float a, float b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline float maxf(float a, float b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline float clampf(float val, float min, float max) noexcept
{ return minf(max, maxf(min, val)); }
constexpr inline double mind(double a, double b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline double maxd(double a, double b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline double clampd(double val, double min, double max) noexcept
{ return mind(max, maxd(min, val)); }
constexpr inline unsigned int minu(unsigned int a, unsigned int b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline unsigned int maxu(unsigned int a, unsigned int b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline unsigned int clampu(unsigned int val, unsigned int min, unsigned int max) noexcept
{ return minu(max, maxu(min, val)); }
constexpr inline int mini(int a, int b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline int maxi(int a, int b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline int clampi(int val, int min, int max) noexcept
{ return mini(max, maxi(min, val)); }
constexpr inline int64_t mini64(int64_t a, int64_t b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline int64_t maxi64(int64_t a, int64_t b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline int64_t clampi64(int64_t val, int64_t min, int64_t max) noexcept
{ return mini64(max, maxi64(min, val)); }
constexpr inline uint64_t minu64(uint64_t a, uint64_t b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline uint64_t maxu64(uint64_t a, uint64_t b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline uint64_t clampu64(uint64_t val, uint64_t min, uint64_t max) noexcept
{ return minu64(max, maxu64(min, val)); }
constexpr inline size_t minz(size_t a, size_t b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline size_t maxz(size_t a, size_t b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline size_t clampz(size_t val, size_t min, size_t max) noexcept
{ return minz(max, maxz(min, val)); }
constexpr inline float lerpf(float val1, float val2, float mu) noexcept
{ return val1 + (val2-val1)*mu; }
constexpr inline float cubic(float val1, float val2, float val3, float val4, float mu) noexcept
{
const float mu2{mu*mu}, mu3{mu2*mu};
const float a0{-0.5f*mu3 + mu2 + -0.5f*mu};
const float a1{ 1.5f*mu3 + -2.5f*mu2 + 1.0f};
const float a2{-1.5f*mu3 + 2.0f*mu2 + 0.5f*mu};
const float a3{ 0.5f*mu3 + -0.5f*mu2};
return val1*a0 + val2*a1 + val3*a2 + val4*a3;
}
/** Find the next power-of-2 for non-power-of-2 numbers. */
inline uint32_t NextPowerOf2(uint32_t value) noexcept
{
if(value > 0)
{
value--;
value |= value>>1;
value |= value>>2;
value |= value>>4;
value |= value>>8;
value |= value>>16;
}
return value+1;
}
/**
* If the value is not already a multiple of r, round down to the next
* multiple.
*/
template<typename T>
constexpr T RoundDown(T value, al::type_identity_t<T> r) noexcept
{ return value - (value%r); }
/**
* If the value is not already a multiple of r, round up to the next multiple.
*/
template<typename T>
constexpr T RoundUp(T value, al::type_identity_t<T> r) noexcept
{ return RoundDown(value + r-1, r); }
/**
* Fast float-to-int conversion. No particular rounding mode is assumed; the
* IEEE-754 default is round-to-nearest with ties-to-even, though an app could
* change it on its own threads. On some systems, a truncating conversion may
* always be the fastest method.
*/
inline int fastf2i(float f) noexcept
{
#if defined(HAVE_SSE_INTRINSICS)
return _mm_cvt_ss2si(_mm_set_ss(f));
#elif defined(_MSC_VER) && defined(_M_IX86_FP)
int i;
__asm fld f
__asm fistp i
return i;
#elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
int i;
#ifdef __SSE_MATH__
__asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
#else
__asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
#endif
return i;
#else
return static_cast<int>(f);
#endif
}
inline unsigned int fastf2u(float f) noexcept
{ return static_cast<unsigned int>(fastf2i(f)); }
/** Converts float-to-int using standard behavior (truncation). */
inline int float2int(float f) noexcept
{
#if defined(HAVE_SSE_INTRINSICS)
return _mm_cvtt_ss2si(_mm_set_ss(f));
#elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0) \
|| ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
&& !defined(__SSE_MATH__))
const int conv_i{al::bit_cast<int>(f)};
const int sign{(conv_i>>31) | 1};
const int shift{((conv_i>>23)&0xff) - (127+23)};
/* Over/underflow */
if(shift >= 31 || shift < -23) UNLIKELY
return 0;
const int mant{(conv_i&0x7fffff) | 0x800000};
if(shift < 0) LIKELY
return (mant >> -shift) * sign;
return (mant << shift) * sign;
#else
return static_cast<int>(f);
#endif
}
inline unsigned int float2uint(float f) noexcept
{ return static_cast<unsigned int>(float2int(f)); }
/** Converts double-to-int using standard behavior (truncation). */
inline int double2int(double d) noexcept
{
#if defined(HAVE_SSE_INTRINSICS)
return _mm_cvttsd_si32(_mm_set_sd(d));
#elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) \
|| ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
&& !defined(__SSE2_MATH__))
const int64_t conv_i64{al::bit_cast<int64_t>(d)};
const int sign{static_cast<int>(conv_i64 >> 63) | 1};
const int shift{(static_cast<int>(conv_i64 >> 52) & 0x7ff) - (1023 + 52)};
/* Over/underflow */
if(shift >= 63 || shift < -52) UNLIKELY
return 0;
const int64_t mant{(conv_i64 & 0xfffffffffffff_i64) | 0x10000000000000_i64};
if(shift < 0) LIKELY
return static_cast<int>(mant >> -shift) * sign;
return static_cast<int>(mant << shift) * sign;
#else
return static_cast<int>(d);
#endif
}
/**
* Rounds a float to the nearest integral value, according to the current
* rounding mode. This is essentially an inlined version of rintf, although
* makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
*/
inline float fast_roundf(float f) noexcept
{
#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
&& !defined(__SSE_MATH__)
float out;
__asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
return out;
#elif (defined(__GNUC__) || defined(__clang__)) && defined(__aarch64__)
float out;
__asm__ volatile("frintx %s0, %s1" : "=w"(out) : "w"(f));
return out;
#else
/* Integral limit, where sub-integral precision is not available for
* floats.
*/
static constexpr float ilim[2]{
8388608.0f /* 0x1.0p+23 */,
-8388608.0f /* -0x1.0p+23 */
};
const unsigned int conv_i{al::bit_cast<unsigned int>(f)};
const unsigned int sign{(conv_i>>31)&0x01};
const unsigned int expo{(conv_i>>23)&0xff};
if(expo >= 150/*+23*/) UNLIKELY
{
/* An exponent (base-2) of 23 or higher is incapable of sub-integral
* precision, so it's already an integral value. We don't need to worry
* about infinity or NaN here.
*/
return f;
}
/* Adding the integral limit to the value (with a matching sign) forces a
* result that has no sub-integral precision, and is consequently forced to
* round to an integral value. Removing the integral limit then restores
* the initial value rounded to the integral. The compiler should not
* optimize this out because of non-associative rules on floating-point
* math (as long as you don't use -fassociative-math,
* -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
* may break).
*/
f += ilim[sign];
return f - ilim[sign];
#endif
}
// Converts level (mB) to gain.
inline float level_mb_to_gain(float x)
{
if(x <= -10'000.0f)
return 0.0f;
return std::pow(10.0f, x / 2'000.0f);
}
// Converts gain to level (mB).
inline float gain_to_level_mb(float x)
{
if (x <= 0.0f)
return -10'000.0f;
return maxf(std::log10(x) * 2'000.0f, -10'000.0f);
}
#endif /* AL_NUMERIC_H */