mirror of https://github.com/axmolengine/axmol.git
223 lines
6.0 KiB
C++
223 lines
6.0 KiB
C++
|
|
||
|
#include "polyphase_resampler.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
|
||
|
#include "alnumbers.h"
|
||
|
#include "opthelpers.h"
|
||
|
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
constexpr double Epsilon{1e-9};
|
||
|
|
||
|
using uint = unsigned int;
|
||
|
|
||
|
/* This is the normalized cardinal sine (sinc) function.
|
||
|
*
|
||
|
* sinc(x) = { 1, x = 0
|
||
|
* { sin(pi x) / (pi x), otherwise.
|
||
|
*/
|
||
|
double Sinc(const double x)
|
||
|
{
|
||
|
if(std::abs(x) < Epsilon) UNLIKELY
|
||
|
return 1.0;
|
||
|
return std::sin(al::numbers::pi*x) / (al::numbers::pi*x);
|
||
|
}
|
||
|
|
||
|
/* The zero-order modified Bessel function of the first kind, used for the
|
||
|
* Kaiser window.
|
||
|
*
|
||
|
* I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
|
||
|
* = sum_{k=0}^inf ((x / 2)^k / k!)^2
|
||
|
*/
|
||
|
constexpr double BesselI_0(const double x)
|
||
|
{
|
||
|
// Start at k=1 since k=0 is trivial.
|
||
|
const double x2{x/2.0};
|
||
|
double term{1.0};
|
||
|
double sum{1.0};
|
||
|
int k{1};
|
||
|
|
||
|
// Let the integration converge until the term of the sum is no longer
|
||
|
// significant.
|
||
|
double last_sum{};
|
||
|
do {
|
||
|
const double y{x2 / k};
|
||
|
++k;
|
||
|
last_sum = sum;
|
||
|
term *= y * y;
|
||
|
sum += term;
|
||
|
} while(sum != last_sum);
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
/* Calculate a Kaiser window from the given beta value and a normalized k
|
||
|
* [-1, 1].
|
||
|
*
|
||
|
* w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
|
||
|
* { 0, elsewhere.
|
||
|
*
|
||
|
* Where k can be calculated as:
|
||
|
*
|
||
|
* k = i / l, where -l <= i <= l.
|
||
|
*
|
||
|
* or:
|
||
|
*
|
||
|
* k = 2 i / M - 1, where 0 <= i <= M.
|
||
|
*/
|
||
|
double Kaiser(const double b, const double k)
|
||
|
{
|
||
|
if(!(k >= -1.0 && k <= 1.0))
|
||
|
return 0.0;
|
||
|
return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b);
|
||
|
}
|
||
|
|
||
|
// Calculates the greatest common divisor of a and b.
|
||
|
constexpr uint Gcd(uint x, uint y)
|
||
|
{
|
||
|
while(y > 0)
|
||
|
{
|
||
|
const uint z{y};
|
||
|
y = x % y;
|
||
|
x = z;
|
||
|
}
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
/* Calculates the size (order) of the Kaiser window. Rejection is in dB and
|
||
|
* the transition width is normalized frequency (0.5 is nyquist).
|
||
|
*
|
||
|
* M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
|
||
|
* { ceil(5.79 / 2 pi f_t), r <= 21.
|
||
|
*
|
||
|
*/
|
||
|
constexpr uint CalcKaiserOrder(const double rejection, const double transition)
|
||
|
{
|
||
|
const double w_t{2.0 * al::numbers::pi * transition};
|
||
|
if(rejection > 21.0) LIKELY
|
||
|
return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t)));
|
||
|
return static_cast<uint>(std::ceil(5.79 / w_t));
|
||
|
}
|
||
|
|
||
|
// Calculates the beta value of the Kaiser window. Rejection is in dB.
|
||
|
constexpr double CalcKaiserBeta(const double rejection)
|
||
|
{
|
||
|
if(rejection > 50.0) LIKELY
|
||
|
return 0.1102 * (rejection - 8.7);
|
||
|
if(rejection >= 21.0)
|
||
|
return (0.5842 * std::pow(rejection - 21.0, 0.4)) +
|
||
|
(0.07886 * (rejection - 21.0));
|
||
|
return 0.0;
|
||
|
}
|
||
|
|
||
|
/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
|
||
|
* width, beta, gain, and cutoff. The point is specified in non-normalized
|
||
|
* samples, from 0 to M, where M = (2 l + 1).
|
||
|
*
|
||
|
* w(k) 2 p f_t sinc(2 f_t x)
|
||
|
*
|
||
|
* x -- centered sample index (i - l)
|
||
|
* k -- normalized and centered window index (x / l)
|
||
|
* w(k) -- window function (Kaiser)
|
||
|
* p -- gain compensation factor when sampling
|
||
|
* f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
|
||
|
*/
|
||
|
double SincFilter(const uint l, const double b, const double gain, const double cutoff,
|
||
|
const uint i)
|
||
|
{
|
||
|
const double x{static_cast<double>(i) - l};
|
||
|
return Kaiser(b, x / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * x);
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
|
||
|
// that's used to cut frequencies above the destination nyquist.
|
||
|
void PPhaseResampler::init(const uint srcRate, const uint dstRate)
|
||
|
{
|
||
|
const uint gcd{Gcd(srcRate, dstRate)};
|
||
|
mP = dstRate / gcd;
|
||
|
mQ = srcRate / gcd;
|
||
|
|
||
|
/* The cutoff is adjusted by half the transition width, so the transition
|
||
|
* ends before the nyquist (0.5). Both are scaled by the downsampling
|
||
|
* factor.
|
||
|
*/
|
||
|
double cutoff, width;
|
||
|
if(mP > mQ)
|
||
|
{
|
||
|
cutoff = 0.475 / mP;
|
||
|
width = 0.05 / mP;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cutoff = 0.475 / mQ;
|
||
|
width = 0.05 / mQ;
|
||
|
}
|
||
|
// A rejection of -180 dB is used for the stop band. Round up when
|
||
|
// calculating the left offset to avoid increasing the transition width.
|
||
|
const uint l{(CalcKaiserOrder(180.0, width)+1) / 2};
|
||
|
const double beta{CalcKaiserBeta(180.0)};
|
||
|
mM = l*2 + 1;
|
||
|
mL = l;
|
||
|
mF.resize(mM);
|
||
|
for(uint i{0};i < mM;i++)
|
||
|
mF[i] = SincFilter(l, beta, mP, cutoff, i);
|
||
|
}
|
||
|
|
||
|
// Perform the upsample-filter-downsample resampling operation using a
|
||
|
// polyphase filter implementation.
|
||
|
void PPhaseResampler::process(const uint inN, const double *in, const uint outN, double *out)
|
||
|
{
|
||
|
if(outN == 0) UNLIKELY
|
||
|
return;
|
||
|
|
||
|
// Handle in-place operation.
|
||
|
std::vector<double> workspace;
|
||
|
double *work{out};
|
||
|
if(work == in) UNLIKELY
|
||
|
{
|
||
|
workspace.resize(outN);
|
||
|
work = workspace.data();
|
||
|
}
|
||
|
|
||
|
// Resample the input.
|
||
|
const uint p{mP}, q{mQ}, m{mM}, l{mL};
|
||
|
const double *f{mF.data()};
|
||
|
for(uint i{0};i < outN;i++)
|
||
|
{
|
||
|
// Input starts at l to compensate for the filter delay. This will
|
||
|
// drop any build-up from the first half of the filter.
|
||
|
size_t j_f{(l + q*i) % p};
|
||
|
size_t j_s{(l + q*i) / p};
|
||
|
|
||
|
// Only take input when 0 <= j_s < inN.
|
||
|
double r{0.0};
|
||
|
if(j_f < m) LIKELY
|
||
|
{
|
||
|
size_t filt_len{(m-j_f+p-1) / p};
|
||
|
if(j_s+1 > inN) LIKELY
|
||
|
{
|
||
|
size_t skip{std::min<size_t>(j_s+1 - inN, filt_len)};
|
||
|
j_f += p*skip;
|
||
|
j_s -= skip;
|
||
|
filt_len -= skip;
|
||
|
}
|
||
|
if(size_t todo{std::min<size_t>(j_s+1, filt_len)}) LIKELY
|
||
|
{
|
||
|
do {
|
||
|
r += f[j_f] * in[j_s];
|
||
|
j_f += p;
|
||
|
--j_s;
|
||
|
} while(--todo);
|
||
|
}
|
||
|
}
|
||
|
work[i] = r;
|
||
|
}
|
||
|
// Clean up after in-place operation.
|
||
|
if(work != out)
|
||
|
std::copy_n(work, outN, out);
|
||
|
}
|