axmol/external/bullet/BulletCollision/CollisionShapes/btOptimizedBvh.cpp

365 lines
12 KiB
C++
Raw Normal View History

2020-11-16 14:47:43 +08:00
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btOptimizedBvh.h"
#include "btStridingMeshInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btIDebugDraw.h"
btOptimizedBvh::btOptimizedBvh()
{
}
btOptimizedBvh::~btOptimizedBvh()
{
}
void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax)
{
m_useQuantization = useQuantizedAabbCompression;
// NodeArray triangleNodes;
struct NodeTriangleCallback : public btInternalTriangleIndexCallback
{
NodeArray& m_triangleNodes;
NodeTriangleCallback& operator=(NodeTriangleCallback& other)
{
m_triangleNodes.copyFromArray(other.m_triangleNodes);
return *this;
}
NodeTriangleCallback(NodeArray& triangleNodes)
: m_triangleNodes(triangleNodes)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle, int partId, int triangleIndex)
{
btOptimizedBvhNode node;
btVector3 aabbMin, aabbMax;
aabbMin.setValue(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
aabbMax.setValue(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
aabbMin.setMin(triangle[0]);
aabbMax.setMax(triangle[0]);
aabbMin.setMin(triangle[1]);
aabbMax.setMax(triangle[1]);
aabbMin.setMin(triangle[2]);
aabbMax.setMax(triangle[2]);
//with quantization?
node.m_aabbMinOrg = aabbMin;
node.m_aabbMaxOrg = aabbMax;
node.m_escapeIndex = -1;
//for child nodes
node.m_subPart = partId;
node.m_triangleIndex = triangleIndex;
m_triangleNodes.push_back(node);
}
};
struct QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback
{
QuantizedNodeArray& m_triangleNodes;
const btQuantizedBvh* m_optimizedTree; // for quantization
QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
{
m_triangleNodes.copyFromArray(other.m_triangleNodes);
m_optimizedTree = other.m_optimizedTree;
return *this;
}
QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes, const btQuantizedBvh* tree)
: m_triangleNodes(triangleNodes), m_optimizedTree(tree)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle, int partId, int triangleIndex)
{
// The partId and triangle index must fit in the same (positive) integer
btAssert(partId < (1 << MAX_NUM_PARTS_IN_BITS));
btAssert(triangleIndex < (1 << (31 - MAX_NUM_PARTS_IN_BITS)));
//negative indices are reserved for escapeIndex
btAssert(triangleIndex >= 0);
btQuantizedBvhNode node;
btVector3 aabbMin, aabbMax;
aabbMin.setValue(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
aabbMax.setValue(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
aabbMin.setMin(triangle[0]);
aabbMax.setMax(triangle[0]);
aabbMin.setMin(triangle[1]);
aabbMax.setMax(triangle[1]);
aabbMin.setMin(triangle[2]);
aabbMax.setMax(triangle[2]);
//PCK: add these checks for zero dimensions of aabb
const btScalar MIN_AABB_DIMENSION = btScalar(0.002);
const btScalar MIN_AABB_HALF_DIMENSION = btScalar(0.001);
if (aabbMax.x() - aabbMin.x() < MIN_AABB_DIMENSION)
{
aabbMax.setX(aabbMax.x() + MIN_AABB_HALF_DIMENSION);
aabbMin.setX(aabbMin.x() - MIN_AABB_HALF_DIMENSION);
}
if (aabbMax.y() - aabbMin.y() < MIN_AABB_DIMENSION)
{
aabbMax.setY(aabbMax.y() + MIN_AABB_HALF_DIMENSION);
aabbMin.setY(aabbMin.y() - MIN_AABB_HALF_DIMENSION);
}
if (aabbMax.z() - aabbMin.z() < MIN_AABB_DIMENSION)
{
aabbMax.setZ(aabbMax.z() + MIN_AABB_HALF_DIMENSION);
aabbMin.setZ(aabbMin.z() - MIN_AABB_HALF_DIMENSION);
}
m_optimizedTree->quantize(&node.m_quantizedAabbMin[0], aabbMin, 0);
m_optimizedTree->quantize(&node.m_quantizedAabbMax[0], aabbMax, 1);
node.m_escapeIndexOrTriangleIndex = (partId << (31 - MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
m_triangleNodes.push_back(node);
}
};
int numLeafNodes = 0;
if (m_useQuantization)
{
//initialize quantization values
setQuantizationValues(bvhAabbMin, bvhAabbMax);
QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes, this);
triangles->InternalProcessAllTriangles(&callback, m_bvhAabbMin, m_bvhAabbMax);
//now we have an array of leafnodes in m_leafNodes
numLeafNodes = m_quantizedLeafNodes.size();
m_quantizedContiguousNodes.resize(2 * numLeafNodes);
}
else
{
NodeTriangleCallback callback(m_leafNodes);
btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
btVector3 aabbMax(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
triangles->InternalProcessAllTriangles(&callback, aabbMin, aabbMax);
//now we have an array of leafnodes in m_leafNodes
numLeafNodes = m_leafNodes.size();
m_contiguousNodes.resize(2 * numLeafNodes);
}
m_curNodeIndex = 0;
buildTree(0, numLeafNodes);
///if the entire tree is small then subtree size, we need to create a header info for the tree
if (m_useQuantization && !m_SubtreeHeaders.size())
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
subtree.m_rootNodeIndex = 0;
subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
}
//PCK: update the copy of the size
m_subtreeHeaderCount = m_SubtreeHeaders.size();
//PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary
m_quantizedLeafNodes.clear();
m_leafNodes.clear();
}
void btOptimizedBvh::refit(btStridingMeshInterface* meshInterface, const btVector3& aabbMin, const btVector3& aabbMax)
{
if (m_useQuantization)
{
setQuantizationValues(aabbMin, aabbMax);
updateBvhNodes(meshInterface, 0, m_curNodeIndex, 0);
///now update all subtree headers
int i;
for (i = 0; i < m_SubtreeHeaders.size(); i++)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
}
}
else
{
}
}
void btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface, const btVector3& aabbMin, const btVector3& aabbMax)
{
//incrementally initialize quantization values
btAssert(m_useQuantization);
btAssert(aabbMin.getX() > m_bvhAabbMin.getX());
btAssert(aabbMin.getY() > m_bvhAabbMin.getY());
btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ());
btAssert(aabbMax.getX() < m_bvhAabbMax.getX());
btAssert(aabbMax.getY() < m_bvhAabbMax.getY());
btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ());
///we should update all quantization values, using updateBvhNodes(meshInterface);
///but we only update chunks that overlap the given aabb
unsigned short quantizedQueryAabbMin[3];
unsigned short quantizedQueryAabbMax[3];
quantize(&quantizedQueryAabbMin[0], aabbMin, 0);
quantize(&quantizedQueryAabbMax[0], aabbMax, 1);
int i;
for (i = 0; i < this->m_SubtreeHeaders.size(); i++)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
//PCK: unsigned instead of bool
unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, subtree.m_quantizedAabbMin, subtree.m_quantizedAabbMax);
if (overlap != 0)
{
updateBvhNodes(meshInterface, subtree.m_rootNodeIndex, subtree.m_rootNodeIndex + subtree.m_subtreeSize, i);
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
}
}
}
void btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface, int firstNode, int endNode, int index)
{
(void)index;
btAssert(m_useQuantization);
int curNodeSubPart = -1;
//get access info to trianglemesh data
const unsigned char* vertexbase = 0;
int numverts = 0;
PHY_ScalarType type = PHY_INTEGER;
int stride = 0;
const unsigned char* indexbase = 0;
int indexstride = 0;
int numfaces = 0;
PHY_ScalarType indicestype = PHY_INTEGER;
btVector3 triangleVerts[3];
btVector3 aabbMin, aabbMax;
const btVector3& meshScaling = meshInterface->getScaling();
int i;
for (i = endNode - 1; i >= firstNode; i--)
{
btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
if (curNode.isLeafNode())
{
//recalc aabb from triangle data
int nodeSubPart = curNode.getPartId();
int nodeTriangleIndex = curNode.getTriangleIndex();
if (nodeSubPart != curNodeSubPart)
{
if (curNodeSubPart >= 0)
meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase, numverts, type, stride, &indexbase, indexstride, numfaces, indicestype, nodeSubPart);
curNodeSubPart = nodeSubPart;
}
//triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,
unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
for (int j = 2; j >= 0; j--)
{
int graphicsindex;
switch (indicestype) {
case PHY_INTEGER: graphicsindex = gfxbase[j]; break;
case PHY_SHORT: graphicsindex = ((unsigned short*)gfxbase)[j]; break;
case PHY_UCHAR: graphicsindex = ((unsigned char*)gfxbase)[j]; break;
default: btAssert(0);
}
if (type == PHY_FLOAT)
{
float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
triangleVerts[j] = btVector3(
graphicsbase[0] * meshScaling.getX(),
graphicsbase[1] * meshScaling.getY(),
graphicsbase[2] * meshScaling.getZ());
}
else
{
double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
triangleVerts[j] = btVector3(btScalar(graphicsbase[0] * meshScaling.getX()), btScalar(graphicsbase[1] * meshScaling.getY()), btScalar(graphicsbase[2] * meshScaling.getZ()));
}
}
aabbMin.setValue(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
aabbMax.setValue(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
aabbMin.setMin(triangleVerts[0]);
aabbMax.setMax(triangleVerts[0]);
aabbMin.setMin(triangleVerts[1]);
aabbMax.setMax(triangleVerts[1]);
aabbMin.setMin(triangleVerts[2]);
aabbMax.setMax(triangleVerts[2]);
quantize(&curNode.m_quantizedAabbMin[0], aabbMin, 0);
quantize(&curNode.m_quantizedAabbMax[0], aabbMax, 1);
}
else
{
//combine aabb from both children
btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i + 1];
btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i + 2] : &m_quantizedContiguousNodes[i + 1 + leftChildNode->getEscapeIndex()];
{
for (int i = 0; i < 3; i++)
{
curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
if (curNode.m_quantizedAabbMin[i] > rightChildNode->m_quantizedAabbMin[i])
curNode.m_quantizedAabbMin[i] = rightChildNode->m_quantizedAabbMin[i];
curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
}
}
}
}
if (curNodeSubPart >= 0)
meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
}
///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
btOptimizedBvh* btOptimizedBvh::deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
{
btQuantizedBvh* bvh = btQuantizedBvh::deSerializeInPlace(i_alignedDataBuffer, i_dataBufferSize, i_swapEndian);
//we don't add additional data so just do a static upcast
return static_cast<btOptimizedBvh*>(bvh);
}