axmol/external/bullet/LinearMath/btQuickprof.cpp

803 lines
23 KiB
C++
Raw Normal View History

2020-11-16 14:47:43 +08:00
/*
***************************************************************************************************
**
** profile.cpp
**
** Real-Time Hierarchical Profiling for Game Programming Gems 3
**
** by Greg Hjelstrom & Byon Garrabrant
**
***************************************************************************************************/
// Credits: The Clock class was inspired by the Timer classes in
// Ogre (www.ogre3d.org).
#include "btQuickprof.h"
#include "btThreads.h"
#ifdef __CELLOS_LV2__
#include <sys/sys_time.h>
#include <sys/time_util.h>
#include <stdio.h>
#endif
#if defined(SUNOS) || defined(__SUNOS__)
#include <stdio.h>
#endif
#ifdef __APPLE__
#include <mach/mach_time.h>
#include <TargetConditionals.h>
#endif
#if defined(WIN32) || defined(_WIN32)
#define BT_USE_WINDOWS_TIMERS
#define WIN32_LEAN_AND_MEAN
#define NOWINRES
#define NOMCX
#define NOIME
#ifdef _XBOX
#include <Xtl.h>
#else //_XBOX
#include <windows.h>
#if WINVER < 0x0602
#define GetTickCount64 GetTickCount
#endif
#endif //_XBOX
#include <time.h>
#else //_WIN32
#include <sys/time.h>
#ifdef BT_LINUX_REALTIME
//required linking against rt (librt)
#include <time.h>
#endif //BT_LINUX_REALTIME
#endif //_WIN32
#define mymin(a, b) (a > b ? a : b)
struct btClockData
{
#ifdef BT_USE_WINDOWS_TIMERS
LARGE_INTEGER mClockFrequency;
LONGLONG mStartTick;
LARGE_INTEGER mStartTime;
#else
#ifdef __CELLOS_LV2__
uint64_t mStartTime;
#else
#ifdef __APPLE__
uint64_t mStartTimeNano;
#endif
struct timeval mStartTime;
#endif
#endif //__CELLOS_LV2__
};
///The btClock is a portable basic clock that measures accurate time in seconds, use for profiling.
btClock::btClock()
{
m_data = new btClockData;
#ifdef BT_USE_WINDOWS_TIMERS
QueryPerformanceFrequency(&m_data->mClockFrequency);
#endif
reset();
}
btClock::~btClock()
{
delete m_data;
}
btClock::btClock(const btClock& other)
{
m_data = new btClockData;
*m_data = *other.m_data;
}
btClock& btClock::operator=(const btClock& other)
{
*m_data = *other.m_data;
return *this;
}
/// Resets the initial reference time.
void btClock::reset()
{
#ifdef BT_USE_WINDOWS_TIMERS
QueryPerformanceCounter(&m_data->mStartTime);
m_data->mStartTick = GetTickCount64();
#else
#ifdef __CELLOS_LV2__
typedef uint64_t ClockSize;
ClockSize newTime;
//__asm __volatile__( "mftb %0" : "=r" (newTime) : : "memory");
SYS_TIMEBASE_GET(newTime);
m_data->mStartTime = newTime;
#else
#ifdef __APPLE__
m_data->mStartTimeNano = mach_absolute_time();
#endif
gettimeofday(&m_data->mStartTime, 0);
#endif
#endif
}
/// Returns the time in ms since the last call to reset or since
/// the btClock was created.
unsigned long long int btClock::getTimeMilliseconds()
{
#ifdef BT_USE_WINDOWS_TIMERS
LARGE_INTEGER currentTime;
QueryPerformanceCounter(&currentTime);
LONGLONG elapsedTime = currentTime.QuadPart -
m_data->mStartTime.QuadPart;
// Compute the number of millisecond ticks elapsed.
unsigned long msecTicks = (unsigned long)(1000 * elapsedTime /
m_data->mClockFrequency.QuadPart);
return msecTicks;
#else
#ifdef __CELLOS_LV2__
uint64_t freq = sys_time_get_timebase_frequency();
double dFreq = ((double)freq) / 1000.0;
typedef uint64_t ClockSize;
ClockSize newTime;
SYS_TIMEBASE_GET(newTime);
//__asm __volatile__( "mftb %0" : "=r" (newTime) : : "memory");
return (unsigned long int)((double(newTime - m_data->mStartTime)) / dFreq);
#else
struct timeval currentTime;
gettimeofday(&currentTime, 0);
return (currentTime.tv_sec - m_data->mStartTime.tv_sec) * 1000 +
(currentTime.tv_usec - m_data->mStartTime.tv_usec) / 1000;
#endif //__CELLOS_LV2__
#endif
}
/// Returns the time in us since the last call to reset or since
/// the Clock was created.
unsigned long long int btClock::getTimeMicroseconds()
{
#ifdef BT_USE_WINDOWS_TIMERS
//see https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
LARGE_INTEGER currentTime, elapsedTime;
QueryPerformanceCounter(&currentTime);
elapsedTime.QuadPart = currentTime.QuadPart -
m_data->mStartTime.QuadPart;
elapsedTime.QuadPart *= 1000000;
elapsedTime.QuadPart /= m_data->mClockFrequency.QuadPart;
return (unsigned long long)elapsedTime.QuadPart;
#else
#ifdef __CELLOS_LV2__
uint64_t freq = sys_time_get_timebase_frequency();
double dFreq = ((double)freq) / 1000000.0;
typedef uint64_t ClockSize;
ClockSize newTime;
//__asm __volatile__( "mftb %0" : "=r" (newTime) : : "memory");
SYS_TIMEBASE_GET(newTime);
return (unsigned long int)((double(newTime - m_data->mStartTime)) / dFreq);
#else
struct timeval currentTime;
gettimeofday(&currentTime, 0);
return (currentTime.tv_sec - m_data->mStartTime.tv_sec) * 1000000 +
(currentTime.tv_usec - m_data->mStartTime.tv_usec);
#endif //__CELLOS_LV2__
#endif
}
unsigned long long int btClock::getTimeNanoseconds()
{
#ifdef BT_USE_WINDOWS_TIMERS
//see https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
LARGE_INTEGER currentTime, elapsedTime;
QueryPerformanceCounter(&currentTime);
elapsedTime.QuadPart = currentTime.QuadPart -
m_data->mStartTime.QuadPart;
elapsedTime.QuadPart *= 1000000000;
elapsedTime.QuadPart /= m_data->mClockFrequency.QuadPart;
return (unsigned long long)elapsedTime.QuadPart;
#else
#ifdef __CELLOS_LV2__
uint64_t freq = sys_time_get_timebase_frequency();
double dFreq = ((double)freq) / 1e9;
typedef uint64_t ClockSize;
ClockSize newTime;
//__asm __volatile__( "mftb %0" : "=r" (newTime) : : "memory");
SYS_TIMEBASE_GET(newTime);
return (unsigned long int)((double(newTime - m_data->mStartTime)) / dFreq);
#else
#ifdef __APPLE__
uint64_t ticks = mach_absolute_time() - m_data->mStartTimeNano;
static long double conversion = 0.0L;
if (0.0L == conversion)
{
// attempt to get conversion to nanoseconds
mach_timebase_info_data_t info;
int err = mach_timebase_info(&info);
if (err)
{
btAssert(0);
conversion = 1.;
}
conversion = info.numer / info.denom;
}
return (ticks * conversion);
#else //__APPLE__
#ifdef BT_LINUX_REALTIME
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return 1000000000 * ts.tv_sec + ts.tv_nsec;
#else
struct timeval currentTime;
gettimeofday(&currentTime, 0);
return (currentTime.tv_sec - m_data->mStartTime.tv_sec) * 1e9 +
(currentTime.tv_usec - m_data->mStartTime.tv_usec) * 1000;
#endif //BT_LINUX_REALTIME
#endif //__APPLE__
#endif //__CELLOS_LV2__
#endif
}
/// Returns the time in s since the last call to reset or since
/// the Clock was created.
btScalar btClock::getTimeSeconds()
{
static const btScalar microseconds_to_seconds = btScalar(0.000001);
return btScalar(getTimeMicroseconds()) * microseconds_to_seconds;
}
#ifndef BT_NO_PROFILE
static btClock gProfileClock;
inline void Profile_Get_Ticks(unsigned long int* ticks)
{
*ticks = (unsigned long int)gProfileClock.getTimeMicroseconds();
}
inline float Profile_Get_Tick_Rate(void)
{
// return 1000000.f;
return 1000.f;
}
/***************************************************************************************************
**
** CProfileNode
**
***************************************************************************************************/
/***********************************************************************************************
* INPUT: *
* name - pointer to a static string which is the name of this profile node *
* parent - parent pointer *
* *
* WARNINGS: *
* The name is assumed to be a static pointer, only the pointer is stored and compared for *
* efficiency reasons. *
*=============================================================================================*/
CProfileNode::CProfileNode(const char* name, CProfileNode* parent) : Name(name),
TotalCalls(0),
TotalTime(0),
StartTime(0),
RecursionCounter(0),
Parent(parent),
Child(NULL),
Sibling(NULL),
m_userPtr(0)
{
Reset();
}
void CProfileNode::CleanupMemory()
{
delete (Child);
Child = NULL;
delete (Sibling);
Sibling = NULL;
}
CProfileNode::~CProfileNode(void)
{
CleanupMemory();
}
/***********************************************************************************************
* INPUT: *
* name - static string pointer to the name of the node we are searching for *
* *
* WARNINGS: *
* All profile names are assumed to be static strings so this function uses pointer compares *
* to find the named node. *
*=============================================================================================*/
CProfileNode* CProfileNode::Get_Sub_Node(const char* name)
{
// Try to find this sub node
CProfileNode* child = Child;
while (child)
{
if (child->Name == name)
{
return child;
}
child = child->Sibling;
}
// We didn't find it, so add it
CProfileNode* node = new CProfileNode(name, this);
node->Sibling = Child;
Child = node;
return node;
}
void CProfileNode::Reset(void)
{
TotalCalls = 0;
TotalTime = 0.0f;
if (Child)
{
Child->Reset();
}
if (Sibling)
{
Sibling->Reset();
}
}
void CProfileNode::Call(void)
{
TotalCalls++;
if (RecursionCounter++ == 0)
{
Profile_Get_Ticks(&StartTime);
}
}
bool CProfileNode::Return(void)
{
if (--RecursionCounter == 0 && TotalCalls != 0)
{
unsigned long int time;
Profile_Get_Ticks(&time);
time -= StartTime;
TotalTime += (float)time / Profile_Get_Tick_Rate();
}
return (RecursionCounter == 0);
}
/***************************************************************************************************
**
** CProfileIterator
**
***************************************************************************************************/
CProfileIterator::CProfileIterator(CProfileNode* start)
{
CurrentParent = start;
CurrentChild = CurrentParent->Get_Child();
}
void CProfileIterator::First(void)
{
CurrentChild = CurrentParent->Get_Child();
}
void CProfileIterator::Next(void)
{
CurrentChild = CurrentChild->Get_Sibling();
}
bool CProfileIterator::Is_Done(void)
{
return CurrentChild == NULL;
}
void CProfileIterator::Enter_Child(int index)
{
CurrentChild = CurrentParent->Get_Child();
while ((CurrentChild != NULL) && (index != 0))
{
index--;
CurrentChild = CurrentChild->Get_Sibling();
}
if (CurrentChild != NULL)
{
CurrentParent = CurrentChild;
CurrentChild = CurrentParent->Get_Child();
}
}
void CProfileIterator::Enter_Parent(void)
{
if (CurrentParent->Get_Parent() != NULL)
{
CurrentParent = CurrentParent->Get_Parent();
}
CurrentChild = CurrentParent->Get_Child();
}
/***************************************************************************************************
**
** CProfileManager
**
***************************************************************************************************/
CProfileNode gRoots[BT_QUICKPROF_MAX_THREAD_COUNT] = {
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL),
CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL), CProfileNode("Root", NULL)};
CProfileNode* gCurrentNodes[BT_QUICKPROF_MAX_THREAD_COUNT] =
{
&gRoots[0],
&gRoots[1],
&gRoots[2],
&gRoots[3],
&gRoots[4],
&gRoots[5],
&gRoots[6],
&gRoots[7],
&gRoots[8],
&gRoots[9],
&gRoots[10],
&gRoots[11],
&gRoots[12],
&gRoots[13],
&gRoots[14],
&gRoots[15],
&gRoots[16],
&gRoots[17],
&gRoots[18],
&gRoots[19],
&gRoots[20],
&gRoots[21],
&gRoots[22],
&gRoots[23],
&gRoots[24],
&gRoots[25],
&gRoots[26],
&gRoots[27],
&gRoots[28],
&gRoots[29],
&gRoots[30],
&gRoots[31],
&gRoots[32],
&gRoots[33],
&gRoots[34],
&gRoots[35],
&gRoots[36],
&gRoots[37],
&gRoots[38],
&gRoots[39],
&gRoots[40],
&gRoots[41],
&gRoots[42],
&gRoots[43],
&gRoots[44],
&gRoots[45],
&gRoots[46],
&gRoots[47],
&gRoots[48],
&gRoots[49],
&gRoots[50],
&gRoots[51],
&gRoots[52],
&gRoots[53],
&gRoots[54],
&gRoots[55],
&gRoots[56],
&gRoots[57],
&gRoots[58],
&gRoots[59],
&gRoots[60],
&gRoots[61],
&gRoots[62],
&gRoots[63],
};
int CProfileManager::FrameCounter = 0;
unsigned long int CProfileManager::ResetTime = 0;
CProfileIterator* CProfileManager::Get_Iterator(void)
{
int threadIndex = btQuickprofGetCurrentThreadIndex2();
if ((threadIndex < 0) || threadIndex >= BT_QUICKPROF_MAX_THREAD_COUNT)
return 0;
return new CProfileIterator(&gRoots[threadIndex]);
}
void CProfileManager::CleanupMemory(void)
{
for (int i = 0; i < BT_QUICKPROF_MAX_THREAD_COUNT; i++)
{
gRoots[i].CleanupMemory();
}
}
/***********************************************************************************************
* CProfileManager::Start_Profile -- Begin a named profile *
* *
* Steps one level deeper into the tree, if a child already exists with the specified name *
* then it accumulates the profiling; otherwise a new child node is added to the profile tree. *
* *
* INPUT: *
* name - name of this profiling record *
* *
* WARNINGS: *
* The string used is assumed to be a static string; pointer compares are used throughout *
* the profiling code for efficiency. *
*=============================================================================================*/
void CProfileManager::Start_Profile(const char* name)
{
int threadIndex = btQuickprofGetCurrentThreadIndex2();
if ((threadIndex < 0) || threadIndex >= BT_QUICKPROF_MAX_THREAD_COUNT)
return;
if (name != gCurrentNodes[threadIndex]->Get_Name())
{
gCurrentNodes[threadIndex] = gCurrentNodes[threadIndex]->Get_Sub_Node(name);
}
gCurrentNodes[threadIndex]->Call();
}
/***********************************************************************************************
* CProfileManager::Stop_Profile -- Stop timing and record the results. *
*=============================================================================================*/
void CProfileManager::Stop_Profile(void)
{
int threadIndex = btQuickprofGetCurrentThreadIndex2();
if ((threadIndex < 0) || threadIndex >= BT_QUICKPROF_MAX_THREAD_COUNT)
return;
// Return will indicate whether we should back up to our parent (we may
// be profiling a recursive function)
if (gCurrentNodes[threadIndex]->Return())
{
gCurrentNodes[threadIndex] = gCurrentNodes[threadIndex]->Get_Parent();
}
}
/***********************************************************************************************
* CProfileManager::Reset -- Reset the contents of the profiling system *
* *
* This resets everything except for the tree structure. All of the timing data is reset. *
*=============================================================================================*/
void CProfileManager::Reset(void)
{
gProfileClock.reset();
int threadIndex = btQuickprofGetCurrentThreadIndex2();
if ((threadIndex < 0) || threadIndex >= BT_QUICKPROF_MAX_THREAD_COUNT)
return;
gRoots[threadIndex].Reset();
gRoots[threadIndex].Call();
FrameCounter = 0;
Profile_Get_Ticks(&ResetTime);
}
/***********************************************************************************************
* CProfileManager::Increment_Frame_Counter -- Increment the frame counter *
*=============================================================================================*/
void CProfileManager::Increment_Frame_Counter(void)
{
FrameCounter++;
}
/***********************************************************************************************
* CProfileManager::Get_Time_Since_Reset -- returns the elapsed time since last reset *
*=============================================================================================*/
float CProfileManager::Get_Time_Since_Reset(void)
{
unsigned long int time;
Profile_Get_Ticks(&time);
time -= ResetTime;
return (float)time / Profile_Get_Tick_Rate();
}
#include <stdio.h>
void CProfileManager::dumpRecursive(CProfileIterator* profileIterator, int spacing)
{
profileIterator->First();
if (profileIterator->Is_Done())
return;
float accumulated_time = 0, parent_time = profileIterator->Is_Root() ? CProfileManager::Get_Time_Since_Reset() : profileIterator->Get_Current_Parent_Total_Time();
int i;
int frames_since_reset = CProfileManager::Get_Frame_Count_Since_Reset();
for (i = 0; i < spacing; i++) printf(".");
printf("----------------------------------\n");
for (i = 0; i < spacing; i++) printf(".");
printf("Profiling: %s (total running time: %.3f ms) ---\n", profileIterator->Get_Current_Parent_Name(), parent_time);
float totalTime = 0.f;
int numChildren = 0;
for (i = 0; !profileIterator->Is_Done(); i++, profileIterator->Next())
{
numChildren++;
float current_total_time = profileIterator->Get_Current_Total_Time();
accumulated_time += current_total_time;
float fraction = parent_time > SIMD_EPSILON ? (current_total_time / parent_time) * 100 : 0.f;
{
int i;
for (i = 0; i < spacing; i++) printf(".");
}
printf("%d -- %s (%.2f %%) :: %.3f ms / frame (%d calls)\n", i, profileIterator->Get_Current_Name(), fraction, (current_total_time / (double)frames_since_reset), profileIterator->Get_Current_Total_Calls());
totalTime += current_total_time;
//recurse into children
}
if (parent_time < accumulated_time)
{
//printf("what's wrong\n");
}
for (i = 0; i < spacing; i++) printf(".");
printf("%s (%.3f %%) :: %.3f ms\n", "Unaccounted:", parent_time > SIMD_EPSILON ? ((parent_time - accumulated_time) / parent_time) * 100 : 0.f, parent_time - accumulated_time);
for (i = 0; i < numChildren; i++)
{
profileIterator->Enter_Child(i);
dumpRecursive(profileIterator, spacing + 3);
profileIterator->Enter_Parent();
}
}
void CProfileManager::dumpAll()
{
CProfileIterator* profileIterator = 0;
profileIterator = CProfileManager::Get_Iterator();
dumpRecursive(profileIterator, 0);
CProfileManager::Release_Iterator(profileIterator);
}
void btEnterProfileZoneDefault(const char* name)
{
}
void btLeaveProfileZoneDefault()
{
}
#else
void btEnterProfileZoneDefault(const char* name)
{
}
void btLeaveProfileZoneDefault()
{
}
#endif //BT_NO_PROFILE
// clang-format off
#if defined(_WIN32) && (defined(__MINGW32__) || defined(__MINGW64__))
#define BT_HAVE_TLS 1
#elif __APPLE__ && !TARGET_OS_IPHONE
// TODO: Modern versions of iOS support TLS now with updated version checking.
#define BT_HAVE_TLS 1
#elif __linux__
#define BT_HAVE_TLS 1
#endif
// __thread is broken on Andorid clang until r12b. See
// https://github.com/android-ndk/ndk/issues/8
#if defined(__ANDROID__) && defined(__clang__)
#if __has_include(<android/ndk-version.h>)
#include <android/ndk-version.h>
#endif // __has_include(<android/ndk-version.h>)
#if defined(__NDK_MAJOR__) && \
((__NDK_MAJOR__ < 12) || ((__NDK_MAJOR__ == 12) && (__NDK_MINOR__ < 1)))
#undef BT_HAVE_TLS
#endif
#endif // defined(__ANDROID__) && defined(__clang__)
// clang-format on
unsigned int btQuickprofGetCurrentThreadIndex2()
{
const unsigned int kNullIndex = ~0U;
#if BT_THREADSAFE
return btGetCurrentThreadIndex();
#else
#if defined(BT_HAVE_TLS)
static __thread unsigned int sThreadIndex = kNullIndex;
#elif defined(_WIN32)
__declspec(thread) static unsigned int sThreadIndex = kNullIndex;
#else
unsigned int sThreadIndex = 0;
return -1;
#endif
static int gThreadCounter = 0;
if (sThreadIndex == kNullIndex)
{
sThreadIndex = gThreadCounter++;
}
return sThreadIndex;
#endif //BT_THREADSAFE
}
static btEnterProfileZoneFunc* bts_enterFunc = btEnterProfileZoneDefault;
static btLeaveProfileZoneFunc* bts_leaveFunc = btLeaveProfileZoneDefault;
void btEnterProfileZone(const char* name)
{
(bts_enterFunc)(name);
}
void btLeaveProfileZone()
{
(bts_leaveFunc)();
}
btEnterProfileZoneFunc* btGetCurrentEnterProfileZoneFunc()
{
return bts_enterFunc;
}
btLeaveProfileZoneFunc* btGetCurrentLeaveProfileZoneFunc()
{
return bts_leaveFunc;
}
void btSetCustomEnterProfileZoneFunc(btEnterProfileZoneFunc* enterFunc)
{
bts_enterFunc = enterFunc;
}
void btSetCustomLeaveProfileZoneFunc(btLeaveProfileZoneFunc* leaveFunc)
{
bts_leaveFunc = leaveFunc;
}
CProfileSample::CProfileSample(const char* name)
{
btEnterProfileZone(name);
}
CProfileSample::~CProfileSample(void)
{
btLeaveProfileZone();
}