mirror of https://github.com/axmolengine/axmol.git
1489 lines
50 KiB
C
1489 lines
50 KiB
C
|
#ifndef GIM_LINEAR_H_INCLUDED
|
||
|
#define GIM_LINEAR_H_INCLUDED
|
||
|
|
||
|
/*! \file gim_linear_math.h
|
||
|
*\author Francisco Leon Najera
|
||
|
Type Independant Vector and matrix operations.
|
||
|
*/
|
||
|
/*
|
||
|
-----------------------------------------------------------------------------
|
||
|
This source file is part of GIMPACT Library.
|
||
|
|
||
|
For the latest info, see http://gimpact.sourceforge.net/
|
||
|
|
||
|
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
|
||
|
email: projectileman@yahoo.com
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of EITHER:
|
||
|
(1) The GNU Lesser General Public License as published by the Free
|
||
|
Software Foundation; either version 2.1 of the License, or (at
|
||
|
your option) any later version. The text of the GNU Lesser
|
||
|
General Public License is included with this library in the
|
||
|
file GIMPACT-LICENSE-LGPL.TXT.
|
||
|
(2) The BSD-style license that is included with this library in
|
||
|
the file GIMPACT-LICENSE-BSD.TXT.
|
||
|
(3) The zlib/libpng license that is included with this library in
|
||
|
the file GIMPACT-LICENSE-ZLIB.TXT.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
|
||
|
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
|
||
|
|
||
|
-----------------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
#include "gim_math.h"
|
||
|
#include "gim_geom_types.h"
|
||
|
|
||
|
//! Zero out a 2D vector
|
||
|
#define VEC_ZERO_2(a) \
|
||
|
{ \
|
||
|
(a)[0] = (a)[1] = 0.0f; \
|
||
|
}
|
||
|
|
||
|
//! Zero out a 3D vector
|
||
|
#define VEC_ZERO(a) \
|
||
|
{ \
|
||
|
(a)[0] = (a)[1] = (a)[2] = 0.0f; \
|
||
|
}
|
||
|
|
||
|
/// Zero out a 4D vector
|
||
|
#define VEC_ZERO_4(a) \
|
||
|
{ \
|
||
|
(a)[0] = (a)[1] = (a)[2] = (a)[3] = 0.0f; \
|
||
|
}
|
||
|
|
||
|
/// Vector copy
|
||
|
#define VEC_COPY_2(b, a) \
|
||
|
{ \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
}
|
||
|
|
||
|
/// Copy 3D vector
|
||
|
#define VEC_COPY(b, a) \
|
||
|
{ \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
(b)[2] = (a)[2]; \
|
||
|
}
|
||
|
|
||
|
/// Copy 4D vector
|
||
|
#define VEC_COPY_4(b, a) \
|
||
|
{ \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
(b)[2] = (a)[2]; \
|
||
|
(b)[3] = (a)[3]; \
|
||
|
}
|
||
|
|
||
|
/// VECTOR SWAP
|
||
|
#define VEC_SWAP(b, a) \
|
||
|
{ \
|
||
|
GIM_SWAP_NUMBERS((b)[0], (a)[0]); \
|
||
|
GIM_SWAP_NUMBERS((b)[1], (a)[1]); \
|
||
|
GIM_SWAP_NUMBERS((b)[2], (a)[2]); \
|
||
|
}
|
||
|
|
||
|
/// Vector difference
|
||
|
#define VEC_DIFF_2(v21, v2, v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] - (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] - (v1)[1]; \
|
||
|
}
|
||
|
|
||
|
/// Vector difference
|
||
|
#define VEC_DIFF(v21, v2, v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] - (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] - (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] - (v1)[2]; \
|
||
|
}
|
||
|
|
||
|
/// Vector difference
|
||
|
#define VEC_DIFF_4(v21, v2, v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] - (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] - (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] - (v1)[2]; \
|
||
|
(v21)[3] = (v2)[3] - (v1)[3]; \
|
||
|
}
|
||
|
|
||
|
/// Vector sum
|
||
|
#define VEC_SUM_2(v21, v2, v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] + (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] + (v1)[1]; \
|
||
|
}
|
||
|
|
||
|
/// Vector sum
|
||
|
#define VEC_SUM(v21, v2, v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] + (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] + (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] + (v1)[2]; \
|
||
|
}
|
||
|
|
||
|
/// Vector sum
|
||
|
#define VEC_SUM_4(v21, v2, v1) \
|
||
|
{ \
|
||
|
(v21)[0] = (v2)[0] + (v1)[0]; \
|
||
|
(v21)[1] = (v2)[1] + (v1)[1]; \
|
||
|
(v21)[2] = (v2)[2] + (v1)[2]; \
|
||
|
(v21)[3] = (v2)[3] + (v1)[3]; \
|
||
|
}
|
||
|
|
||
|
/// scalar times vector
|
||
|
#define VEC_SCALE_2(c, a, b) \
|
||
|
{ \
|
||
|
(c)[0] = (a) * (b)[0]; \
|
||
|
(c)[1] = (a) * (b)[1]; \
|
||
|
}
|
||
|
|
||
|
/// scalar times vector
|
||
|
#define VEC_SCALE(c, a, b) \
|
||
|
{ \
|
||
|
(c)[0] = (a) * (b)[0]; \
|
||
|
(c)[1] = (a) * (b)[1]; \
|
||
|
(c)[2] = (a) * (b)[2]; \
|
||
|
}
|
||
|
|
||
|
/// scalar times vector
|
||
|
#define VEC_SCALE_4(c, a, b) \
|
||
|
{ \
|
||
|
(c)[0] = (a) * (b)[0]; \
|
||
|
(c)[1] = (a) * (b)[1]; \
|
||
|
(c)[2] = (a) * (b)[2]; \
|
||
|
(c)[3] = (a) * (b)[3]; \
|
||
|
}
|
||
|
|
||
|
/// accumulate scaled vector
|
||
|
#define VEC_ACCUM_2(c, a, b) \
|
||
|
{ \
|
||
|
(c)[0] += (a) * (b)[0]; \
|
||
|
(c)[1] += (a) * (b)[1]; \
|
||
|
}
|
||
|
|
||
|
/// accumulate scaled vector
|
||
|
#define VEC_ACCUM(c, a, b) \
|
||
|
{ \
|
||
|
(c)[0] += (a) * (b)[0]; \
|
||
|
(c)[1] += (a) * (b)[1]; \
|
||
|
(c)[2] += (a) * (b)[2]; \
|
||
|
}
|
||
|
|
||
|
/// accumulate scaled vector
|
||
|
#define VEC_ACCUM_4(c, a, b) \
|
||
|
{ \
|
||
|
(c)[0] += (a) * (b)[0]; \
|
||
|
(c)[1] += (a) * (b)[1]; \
|
||
|
(c)[2] += (a) * (b)[2]; \
|
||
|
(c)[3] += (a) * (b)[3]; \
|
||
|
}
|
||
|
|
||
|
/// Vector dot product
|
||
|
#define VEC_DOT_2(a, b) ((a)[0] * (b)[0] + (a)[1] * (b)[1])
|
||
|
|
||
|
/// Vector dot product
|
||
|
#define VEC_DOT(a, b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2])
|
||
|
|
||
|
/// Vector dot product
|
||
|
#define VEC_DOT_4(a, b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2] + (a)[3] * (b)[3])
|
||
|
|
||
|
/// vector impact parameter (squared)
|
||
|
#define VEC_IMPACT_SQ(bsq, direction, position) \
|
||
|
{ \
|
||
|
GREAL _llel_ = VEC_DOT(direction, position); \
|
||
|
bsq = VEC_DOT(position, position) - _llel_ * _llel_; \
|
||
|
}
|
||
|
|
||
|
/// vector impact parameter
|
||
|
#define VEC_IMPACT(bsq, direction, position) \
|
||
|
{ \
|
||
|
VEC_IMPACT_SQ(bsq, direction, position); \
|
||
|
GIM_SQRT(bsq, bsq); \
|
||
|
}
|
||
|
|
||
|
/// Vector length
|
||
|
#define VEC_LENGTH_2(a, l) \
|
||
|
{ \
|
||
|
GREAL _pp = VEC_DOT_2(a, a); \
|
||
|
GIM_SQRT(_pp, l); \
|
||
|
}
|
||
|
|
||
|
/// Vector length
|
||
|
#define VEC_LENGTH(a, l) \
|
||
|
{ \
|
||
|
GREAL _pp = VEC_DOT(a, a); \
|
||
|
GIM_SQRT(_pp, l); \
|
||
|
}
|
||
|
|
||
|
/// Vector length
|
||
|
#define VEC_LENGTH_4(a, l) \
|
||
|
{ \
|
||
|
GREAL _pp = VEC_DOT_4(a, a); \
|
||
|
GIM_SQRT(_pp, l); \
|
||
|
}
|
||
|
|
||
|
/// Vector inv length
|
||
|
#define VEC_INV_LENGTH_2(a, l) \
|
||
|
{ \
|
||
|
GREAL _pp = VEC_DOT_2(a, a); \
|
||
|
GIM_INV_SQRT(_pp, l); \
|
||
|
}
|
||
|
|
||
|
/// Vector inv length
|
||
|
#define VEC_INV_LENGTH(a, l) \
|
||
|
{ \
|
||
|
GREAL _pp = VEC_DOT(a, a); \
|
||
|
GIM_INV_SQRT(_pp, l); \
|
||
|
}
|
||
|
|
||
|
/// Vector inv length
|
||
|
#define VEC_INV_LENGTH_4(a, l) \
|
||
|
{ \
|
||
|
GREAL _pp = VEC_DOT_4(a, a); \
|
||
|
GIM_INV_SQRT(_pp, l); \
|
||
|
}
|
||
|
|
||
|
/// distance between two points
|
||
|
#define VEC_DISTANCE(_len, _va, _vb) \
|
||
|
{ \
|
||
|
vec3f _tmp_; \
|
||
|
VEC_DIFF(_tmp_, _vb, _va); \
|
||
|
VEC_LENGTH(_tmp_, _len); \
|
||
|
}
|
||
|
|
||
|
/// Vector length
|
||
|
#define VEC_CONJUGATE_LENGTH(a, l) \
|
||
|
{ \
|
||
|
GREAL _pp = 1.0 - a[0] * a[0] - a[1] * a[1] - a[2] * a[2]; \
|
||
|
GIM_SQRT(_pp, l); \
|
||
|
}
|
||
|
|
||
|
/// Vector length
|
||
|
#define VEC_NORMALIZE(a) \
|
||
|
{ \
|
||
|
GREAL len; \
|
||
|
VEC_INV_LENGTH(a, len); \
|
||
|
if (len < G_REAL_INFINITY) \
|
||
|
{ \
|
||
|
a[0] *= len; \
|
||
|
a[1] *= len; \
|
||
|
a[2] *= len; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/// Set Vector size
|
||
|
#define VEC_RENORMALIZE(a, newlen) \
|
||
|
{ \
|
||
|
GREAL len; \
|
||
|
VEC_INV_LENGTH(a, len); \
|
||
|
if (len < G_REAL_INFINITY) \
|
||
|
{ \
|
||
|
len *= newlen; \
|
||
|
a[0] *= len; \
|
||
|
a[1] *= len; \
|
||
|
a[2] *= len; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/// Vector cross
|
||
|
#define VEC_CROSS(c, a, b) \
|
||
|
{ \
|
||
|
c[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1]; \
|
||
|
c[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2]; \
|
||
|
c[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]; \
|
||
|
}
|
||
|
|
||
|
/*! Vector perp -- assumes that n is of unit length
|
||
|
* accepts vector v, subtracts out any component parallel to n */
|
||
|
#define VEC_PERPENDICULAR(vp, v, n) \
|
||
|
{ \
|
||
|
GREAL dot = VEC_DOT(v, n); \
|
||
|
vp[0] = (v)[0] - dot * (n)[0]; \
|
||
|
vp[1] = (v)[1] - dot * (n)[1]; \
|
||
|
vp[2] = (v)[2] - dot * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/*! Vector parallel -- assumes that n is of unit length */
|
||
|
#define VEC_PARALLEL(vp, v, n) \
|
||
|
{ \
|
||
|
GREAL dot = VEC_DOT(v, n); \
|
||
|
vp[0] = (dot) * (n)[0]; \
|
||
|
vp[1] = (dot) * (n)[1]; \
|
||
|
vp[2] = (dot) * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/*! Same as Vector parallel -- n can have any length
|
||
|
* accepts vector v, subtracts out any component perpendicular to n */
|
||
|
#define VEC_PROJECT(vp, v, n) \
|
||
|
{ \
|
||
|
GREAL scalar = VEC_DOT(v, n); \
|
||
|
scalar /= VEC_DOT(n, n); \
|
||
|
vp[0] = (scalar) * (n)[0]; \
|
||
|
vp[1] = (scalar) * (n)[1]; \
|
||
|
vp[2] = (scalar) * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/*! accepts vector v*/
|
||
|
#define VEC_UNPROJECT(vp, v, n) \
|
||
|
{ \
|
||
|
GREAL scalar = VEC_DOT(v, n); \
|
||
|
scalar = VEC_DOT(n, n) / scalar; \
|
||
|
vp[0] = (scalar) * (n)[0]; \
|
||
|
vp[1] = (scalar) * (n)[1]; \
|
||
|
vp[2] = (scalar) * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/*! Vector reflection -- assumes n is of unit length
|
||
|
Takes vector v, reflects it against reflector n, and returns vr */
|
||
|
#define VEC_REFLECT(vr, v, n) \
|
||
|
{ \
|
||
|
GREAL dot = VEC_DOT(v, n); \
|
||
|
vr[0] = (v)[0] - 2.0 * (dot) * (n)[0]; \
|
||
|
vr[1] = (v)[1] - 2.0 * (dot) * (n)[1]; \
|
||
|
vr[2] = (v)[2] - 2.0 * (dot) * (n)[2]; \
|
||
|
}
|
||
|
|
||
|
/*! Vector blending
|
||
|
Takes two vectors a, b, blends them together with two scalars */
|
||
|
#define VEC_BLEND_AB(vr, sa, a, sb, b) \
|
||
|
{ \
|
||
|
vr[0] = (sa) * (a)[0] + (sb) * (b)[0]; \
|
||
|
vr[1] = (sa) * (a)[1] + (sb) * (b)[1]; \
|
||
|
vr[2] = (sa) * (a)[2] + (sb) * (b)[2]; \
|
||
|
}
|
||
|
|
||
|
/*! Vector blending
|
||
|
Takes two vectors a, b, blends them together with s <=1 */
|
||
|
#define VEC_BLEND(vr, a, b, s) VEC_BLEND_AB(vr, (1 - s), a, s, b)
|
||
|
|
||
|
#define VEC_SET3(a, b, op, c) \
|
||
|
a[0] = b[0] op c[0]; \
|
||
|
a[1] = b[1] op c[1]; \
|
||
|
a[2] = b[2] op c[2];
|
||
|
|
||
|
//! Finds the bigger cartesian coordinate from a vector
|
||
|
#define VEC_MAYOR_COORD(vec, maxc) \
|
||
|
{ \
|
||
|
GREAL A[] = {fabs(vec[0]), fabs(vec[1]), fabs(vec[2])}; \
|
||
|
maxc = A[0] > A[1] ? (A[0] > A[2] ? 0 : 2) : (A[1] > A[2] ? 1 : 2); \
|
||
|
}
|
||
|
|
||
|
//! Finds the 2 smallest cartesian coordinates from a vector
|
||
|
#define VEC_MINOR_AXES(vec, i0, i1) \
|
||
|
{ \
|
||
|
VEC_MAYOR_COORD(vec, i0); \
|
||
|
i0 = (i0 + 1) % 3; \
|
||
|
i1 = (i0 + 1) % 3; \
|
||
|
}
|
||
|
|
||
|
#define VEC_EQUAL(v1, v2) (v1[0] == v2[0] && v1[1] == v2[1] && v1[2] == v2[2])
|
||
|
|
||
|
#define VEC_NEAR_EQUAL(v1, v2) (GIM_NEAR_EQUAL(v1[0], v2[0]) && GIM_NEAR_EQUAL(v1[1], v2[1]) && GIM_NEAR_EQUAL(v1[2], v2[2]))
|
||
|
|
||
|
/// Vector cross
|
||
|
#define X_AXIS_CROSS_VEC(dst, src) \
|
||
|
{ \
|
||
|
dst[0] = 0.0f; \
|
||
|
dst[1] = -src[2]; \
|
||
|
dst[2] = src[1]; \
|
||
|
}
|
||
|
|
||
|
#define Y_AXIS_CROSS_VEC(dst, src) \
|
||
|
{ \
|
||
|
dst[0] = src[2]; \
|
||
|
dst[1] = 0.0f; \
|
||
|
dst[2] = -src[0]; \
|
||
|
}
|
||
|
|
||
|
#define Z_AXIS_CROSS_VEC(dst, src) \
|
||
|
{ \
|
||
|
dst[0] = -src[1]; \
|
||
|
dst[1] = src[0]; \
|
||
|
dst[2] = 0.0f; \
|
||
|
}
|
||
|
|
||
|
/// initialize matrix
|
||
|
#define IDENTIFY_MATRIX_3X3(m) \
|
||
|
{ \
|
||
|
m[0][0] = 1.0; \
|
||
|
m[0][1] = 0.0; \
|
||
|
m[0][2] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = 0.0; \
|
||
|
m[1][1] = 1.0; \
|
||
|
m[1][2] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = 0.0; \
|
||
|
m[2][1] = 0.0; \
|
||
|
m[2][2] = 1.0; \
|
||
|
}
|
||
|
|
||
|
/*! initialize matrix */
|
||
|
#define IDENTIFY_MATRIX_4X4(m) \
|
||
|
{ \
|
||
|
m[0][0] = 1.0; \
|
||
|
m[0][1] = 0.0; \
|
||
|
m[0][2] = 0.0; \
|
||
|
m[0][3] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = 0.0; \
|
||
|
m[1][1] = 1.0; \
|
||
|
m[1][2] = 0.0; \
|
||
|
m[1][3] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = 0.0; \
|
||
|
m[2][1] = 0.0; \
|
||
|
m[2][2] = 1.0; \
|
||
|
m[2][3] = 0.0; \
|
||
|
\
|
||
|
m[3][0] = 0.0; \
|
||
|
m[3][1] = 0.0; \
|
||
|
m[3][2] = 0.0; \
|
||
|
m[3][3] = 1.0; \
|
||
|
}
|
||
|
|
||
|
/*! initialize matrix */
|
||
|
#define ZERO_MATRIX_4X4(m) \
|
||
|
{ \
|
||
|
m[0][0] = 0.0; \
|
||
|
m[0][1] = 0.0; \
|
||
|
m[0][2] = 0.0; \
|
||
|
m[0][3] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = 0.0; \
|
||
|
m[1][1] = 0.0; \
|
||
|
m[1][2] = 0.0; \
|
||
|
m[1][3] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = 0.0; \
|
||
|
m[2][1] = 0.0; \
|
||
|
m[2][2] = 0.0; \
|
||
|
m[2][3] = 0.0; \
|
||
|
\
|
||
|
m[3][0] = 0.0; \
|
||
|
m[3][1] = 0.0; \
|
||
|
m[3][2] = 0.0; \
|
||
|
m[3][3] = 0.0; \
|
||
|
}
|
||
|
|
||
|
/*! matrix rotation X */
|
||
|
#define ROTX_CS(m, cosine, sine) \
|
||
|
{ \
|
||
|
/* rotation about the x-axis */ \
|
||
|
\
|
||
|
m[0][0] = 1.0; \
|
||
|
m[0][1] = 0.0; \
|
||
|
m[0][2] = 0.0; \
|
||
|
m[0][3] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = 0.0; \
|
||
|
m[1][1] = (cosine); \
|
||
|
m[1][2] = (sine); \
|
||
|
m[1][3] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = 0.0; \
|
||
|
m[2][1] = -(sine); \
|
||
|
m[2][2] = (cosine); \
|
||
|
m[2][3] = 0.0; \
|
||
|
\
|
||
|
m[3][0] = 0.0; \
|
||
|
m[3][1] = 0.0; \
|
||
|
m[3][2] = 0.0; \
|
||
|
m[3][3] = 1.0; \
|
||
|
}
|
||
|
|
||
|
/*! matrix rotation Y */
|
||
|
#define ROTY_CS(m, cosine, sine) \
|
||
|
{ \
|
||
|
/* rotation about the y-axis */ \
|
||
|
\
|
||
|
m[0][0] = (cosine); \
|
||
|
m[0][1] = 0.0; \
|
||
|
m[0][2] = -(sine); \
|
||
|
m[0][3] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = 0.0; \
|
||
|
m[1][1] = 1.0; \
|
||
|
m[1][2] = 0.0; \
|
||
|
m[1][3] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = (sine); \
|
||
|
m[2][1] = 0.0; \
|
||
|
m[2][2] = (cosine); \
|
||
|
m[2][3] = 0.0; \
|
||
|
\
|
||
|
m[3][0] = 0.0; \
|
||
|
m[3][1] = 0.0; \
|
||
|
m[3][2] = 0.0; \
|
||
|
m[3][3] = 1.0; \
|
||
|
}
|
||
|
|
||
|
/*! matrix rotation Z */
|
||
|
#define ROTZ_CS(m, cosine, sine) \
|
||
|
{ \
|
||
|
/* rotation about the z-axis */ \
|
||
|
\
|
||
|
m[0][0] = (cosine); \
|
||
|
m[0][1] = (sine); \
|
||
|
m[0][2] = 0.0; \
|
||
|
m[0][3] = 0.0; \
|
||
|
\
|
||
|
m[1][0] = -(sine); \
|
||
|
m[1][1] = (cosine); \
|
||
|
m[1][2] = 0.0; \
|
||
|
m[1][3] = 0.0; \
|
||
|
\
|
||
|
m[2][0] = 0.0; \
|
||
|
m[2][1] = 0.0; \
|
||
|
m[2][2] = 1.0; \
|
||
|
m[2][3] = 0.0; \
|
||
|
\
|
||
|
m[3][0] = 0.0; \
|
||
|
m[3][1] = 0.0; \
|
||
|
m[3][2] = 0.0; \
|
||
|
m[3][3] = 1.0; \
|
||
|
}
|
||
|
|
||
|
/*! matrix copy */
|
||
|
#define COPY_MATRIX_2X2(b, a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix copy */
|
||
|
#define COPY_MATRIX_2X3(b, a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
b[0][2] = a[0][2]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[1][2]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix copy */
|
||
|
#define COPY_MATRIX_3X3(b, a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
b[0][2] = a[0][2]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[1][2]; \
|
||
|
\
|
||
|
b[2][0] = a[2][0]; \
|
||
|
b[2][1] = a[2][1]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix copy */
|
||
|
#define COPY_MATRIX_4X4(b, a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[0][1]; \
|
||
|
b[0][2] = a[0][2]; \
|
||
|
b[0][3] = a[0][3]; \
|
||
|
\
|
||
|
b[1][0] = a[1][0]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[1][2]; \
|
||
|
b[1][3] = a[1][3]; \
|
||
|
\
|
||
|
b[2][0] = a[2][0]; \
|
||
|
b[2][1] = a[2][1]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
b[2][3] = a[2][3]; \
|
||
|
\
|
||
|
b[3][0] = a[3][0]; \
|
||
|
b[3][1] = a[3][1]; \
|
||
|
b[3][2] = a[3][2]; \
|
||
|
b[3][3] = a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix transpose */
|
||
|
#define TRANSPOSE_MATRIX_2X2(b, a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[1][0]; \
|
||
|
\
|
||
|
b[1][0] = a[0][1]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix transpose */
|
||
|
#define TRANSPOSE_MATRIX_3X3(b, a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[1][0]; \
|
||
|
b[0][2] = a[2][0]; \
|
||
|
\
|
||
|
b[1][0] = a[0][1]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[2][1]; \
|
||
|
\
|
||
|
b[2][0] = a[0][2]; \
|
||
|
b[2][1] = a[1][2]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix transpose */
|
||
|
#define TRANSPOSE_MATRIX_4X4(b, a) \
|
||
|
{ \
|
||
|
b[0][0] = a[0][0]; \
|
||
|
b[0][1] = a[1][0]; \
|
||
|
b[0][2] = a[2][0]; \
|
||
|
b[0][3] = a[3][0]; \
|
||
|
\
|
||
|
b[1][0] = a[0][1]; \
|
||
|
b[1][1] = a[1][1]; \
|
||
|
b[1][2] = a[2][1]; \
|
||
|
b[1][3] = a[3][1]; \
|
||
|
\
|
||
|
b[2][0] = a[0][2]; \
|
||
|
b[2][1] = a[1][2]; \
|
||
|
b[2][2] = a[2][2]; \
|
||
|
b[2][3] = a[3][2]; \
|
||
|
\
|
||
|
b[3][0] = a[0][3]; \
|
||
|
b[3][1] = a[1][3]; \
|
||
|
b[3][2] = a[2][3]; \
|
||
|
b[3][3] = a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define SCALE_MATRIX_2X2(b, s, a) \
|
||
|
{ \
|
||
|
b[0][0] = (s)*a[0][0]; \
|
||
|
b[0][1] = (s)*a[0][1]; \
|
||
|
\
|
||
|
b[1][0] = (s)*a[1][0]; \
|
||
|
b[1][1] = (s)*a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define SCALE_MATRIX_3X3(b, s, a) \
|
||
|
{ \
|
||
|
b[0][0] = (s)*a[0][0]; \
|
||
|
b[0][1] = (s)*a[0][1]; \
|
||
|
b[0][2] = (s)*a[0][2]; \
|
||
|
\
|
||
|
b[1][0] = (s)*a[1][0]; \
|
||
|
b[1][1] = (s)*a[1][1]; \
|
||
|
b[1][2] = (s)*a[1][2]; \
|
||
|
\
|
||
|
b[2][0] = (s)*a[2][0]; \
|
||
|
b[2][1] = (s)*a[2][1]; \
|
||
|
b[2][2] = (s)*a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define SCALE_MATRIX_4X4(b, s, a) \
|
||
|
{ \
|
||
|
b[0][0] = (s)*a[0][0]; \
|
||
|
b[0][1] = (s)*a[0][1]; \
|
||
|
b[0][2] = (s)*a[0][2]; \
|
||
|
b[0][3] = (s)*a[0][3]; \
|
||
|
\
|
||
|
b[1][0] = (s)*a[1][0]; \
|
||
|
b[1][1] = (s)*a[1][1]; \
|
||
|
b[1][2] = (s)*a[1][2]; \
|
||
|
b[1][3] = (s)*a[1][3]; \
|
||
|
\
|
||
|
b[2][0] = (s)*a[2][0]; \
|
||
|
b[2][1] = (s)*a[2][1]; \
|
||
|
b[2][2] = (s)*a[2][2]; \
|
||
|
b[2][3] = (s)*a[2][3]; \
|
||
|
\
|
||
|
b[3][0] = s * a[3][0]; \
|
||
|
b[3][1] = s * a[3][1]; \
|
||
|
b[3][2] = s * a[3][2]; \
|
||
|
b[3][3] = s * a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define SCALE_VEC_MATRIX_2X2(b, svec, a) \
|
||
|
{ \
|
||
|
b[0][0] = svec[0] * a[0][0]; \
|
||
|
b[1][0] = svec[0] * a[1][0]; \
|
||
|
\
|
||
|
b[0][1] = svec[1] * a[0][1]; \
|
||
|
b[1][1] = svec[1] * a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar. Each columns is scaled by each scalar vector component */
|
||
|
#define SCALE_VEC_MATRIX_3X3(b, svec, a) \
|
||
|
{ \
|
||
|
b[0][0] = svec[0] * a[0][0]; \
|
||
|
b[1][0] = svec[0] * a[1][0]; \
|
||
|
b[2][0] = svec[0] * a[2][0]; \
|
||
|
\
|
||
|
b[0][1] = svec[1] * a[0][1]; \
|
||
|
b[1][1] = svec[1] * a[1][1]; \
|
||
|
b[2][1] = svec[1] * a[2][1]; \
|
||
|
\
|
||
|
b[0][2] = svec[2] * a[0][2]; \
|
||
|
b[1][2] = svec[2] * a[1][2]; \
|
||
|
b[2][2] = svec[2] * a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define SCALE_VEC_MATRIX_4X4(b, svec, a) \
|
||
|
{ \
|
||
|
b[0][0] = svec[0] * a[0][0]; \
|
||
|
b[1][0] = svec[0] * a[1][0]; \
|
||
|
b[2][0] = svec[0] * a[2][0]; \
|
||
|
b[3][0] = svec[0] * a[3][0]; \
|
||
|
\
|
||
|
b[0][1] = svec[1] * a[0][1]; \
|
||
|
b[1][1] = svec[1] * a[1][1]; \
|
||
|
b[2][1] = svec[1] * a[2][1]; \
|
||
|
b[3][1] = svec[1] * a[3][1]; \
|
||
|
\
|
||
|
b[0][2] = svec[2] * a[0][2]; \
|
||
|
b[1][2] = svec[2] * a[1][2]; \
|
||
|
b[2][2] = svec[2] * a[2][2]; \
|
||
|
b[3][2] = svec[2] * a[3][2]; \
|
||
|
\
|
||
|
b[0][3] = svec[3] * a[0][3]; \
|
||
|
b[1][3] = svec[3] * a[1][3]; \
|
||
|
b[2][3] = svec[3] * a[2][3]; \
|
||
|
b[3][3] = svec[3] * a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define ACCUM_SCALE_MATRIX_2X2(b, s, a) \
|
||
|
{ \
|
||
|
b[0][0] += (s)*a[0][0]; \
|
||
|
b[0][1] += (s)*a[0][1]; \
|
||
|
\
|
||
|
b[1][0] += (s)*a[1][0]; \
|
||
|
b[1][1] += (s)*a[1][1]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define ACCUM_SCALE_MATRIX_3X3(b, s, a) \
|
||
|
{ \
|
||
|
b[0][0] += (s)*a[0][0]; \
|
||
|
b[0][1] += (s)*a[0][1]; \
|
||
|
b[0][2] += (s)*a[0][2]; \
|
||
|
\
|
||
|
b[1][0] += (s)*a[1][0]; \
|
||
|
b[1][1] += (s)*a[1][1]; \
|
||
|
b[1][2] += (s)*a[1][2]; \
|
||
|
\
|
||
|
b[2][0] += (s)*a[2][0]; \
|
||
|
b[2][1] += (s)*a[2][1]; \
|
||
|
b[2][2] += (s)*a[2][2]; \
|
||
|
}
|
||
|
|
||
|
/*! multiply matrix by scalar */
|
||
|
#define ACCUM_SCALE_MATRIX_4X4(b, s, a) \
|
||
|
{ \
|
||
|
b[0][0] += (s)*a[0][0]; \
|
||
|
b[0][1] += (s)*a[0][1]; \
|
||
|
b[0][2] += (s)*a[0][2]; \
|
||
|
b[0][3] += (s)*a[0][3]; \
|
||
|
\
|
||
|
b[1][0] += (s)*a[1][0]; \
|
||
|
b[1][1] += (s)*a[1][1]; \
|
||
|
b[1][2] += (s)*a[1][2]; \
|
||
|
b[1][3] += (s)*a[1][3]; \
|
||
|
\
|
||
|
b[2][0] += (s)*a[2][0]; \
|
||
|
b[2][1] += (s)*a[2][1]; \
|
||
|
b[2][2] += (s)*a[2][2]; \
|
||
|
b[2][3] += (s)*a[2][3]; \
|
||
|
\
|
||
|
b[3][0] += (s)*a[3][0]; \
|
||
|
b[3][1] += (s)*a[3][1]; \
|
||
|
b[3][2] += (s)*a[3][2]; \
|
||
|
b[3][3] += (s)*a[3][3]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix product */
|
||
|
/*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
|
||
|
#define MATRIX_PRODUCT_2X2(c, a, b) \
|
||
|
{ \
|
||
|
c[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0]; \
|
||
|
c[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1]; \
|
||
|
\
|
||
|
c[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0]; \
|
||
|
c[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix product */
|
||
|
/*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
|
||
|
#define MATRIX_PRODUCT_3X3(c, a, b) \
|
||
|
{ \
|
||
|
c[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0]; \
|
||
|
c[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1]; \
|
||
|
c[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2]; \
|
||
|
\
|
||
|
c[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0]; \
|
||
|
c[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1]; \
|
||
|
c[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2]; \
|
||
|
\
|
||
|
c[2][0] = a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0]; \
|
||
|
c[2][1] = a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1]; \
|
||
|
c[2][2] = a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix product */
|
||
|
/*! c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];*/
|
||
|
#define MATRIX_PRODUCT_4X4(c, a, b) \
|
||
|
{ \
|
||
|
c[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0] + a[0][3] * b[3][0]; \
|
||
|
c[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1] + a[0][3] * b[3][1]; \
|
||
|
c[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2] + a[0][3] * b[3][2]; \
|
||
|
c[0][3] = a[0][0] * b[0][3] + a[0][1] * b[1][3] + a[0][2] * b[2][3] + a[0][3] * b[3][3]; \
|
||
|
\
|
||
|
c[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0] + a[1][3] * b[3][0]; \
|
||
|
c[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1] + a[1][3] * b[3][1]; \
|
||
|
c[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2] + a[1][3] * b[3][2]; \
|
||
|
c[1][3] = a[1][0] * b[0][3] + a[1][1] * b[1][3] + a[1][2] * b[2][3] + a[1][3] * b[3][3]; \
|
||
|
\
|
||
|
c[2][0] = a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0] + a[2][3] * b[3][0]; \
|
||
|
c[2][1] = a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1] + a[2][3] * b[3][1]; \
|
||
|
c[2][2] = a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2] + a[2][3] * b[3][2]; \
|
||
|
c[2][3] = a[2][0] * b[0][3] + a[2][1] * b[1][3] + a[2][2] * b[2][3] + a[2][3] * b[3][3]; \
|
||
|
\
|
||
|
c[3][0] = a[3][0] * b[0][0] + a[3][1] * b[1][0] + a[3][2] * b[2][0] + a[3][3] * b[3][0]; \
|
||
|
c[3][1] = a[3][0] * b[0][1] + a[3][1] * b[1][1] + a[3][2] * b[2][1] + a[3][3] * b[3][1]; \
|
||
|
c[3][2] = a[3][0] * b[0][2] + a[3][1] * b[1][2] + a[3][2] * b[2][2] + a[3][3] * b[3][2]; \
|
||
|
c[3][3] = a[3][0] * b[0][3] + a[3][1] * b[1][3] + a[3][2] * b[2][3] + a[3][3] * b[3][3]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix times vector */
|
||
|
#define MAT_DOT_VEC_2X2(p, m, v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0] * v[0] + m[0][1] * v[1]; \
|
||
|
p[1] = m[1][0] * v[0] + m[1][1] * v[1]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix times vector */
|
||
|
#define MAT_DOT_VEC_3X3(p, m, v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2]; \
|
||
|
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2]; \
|
||
|
p[2] = m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix times vector
|
||
|
v is a vec4f
|
||
|
*/
|
||
|
#define MAT_DOT_VEC_4X4(p, m, v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2] + m[0][3] * v[3]; \
|
||
|
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2] + m[1][3] * v[3]; \
|
||
|
p[2] = m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2] + m[2][3] * v[3]; \
|
||
|
p[3] = m[3][0] * v[0] + m[3][1] * v[1] + m[3][2] * v[2] + m[3][3] * v[3]; \
|
||
|
}
|
||
|
|
||
|
/*! matrix times vector
|
||
|
v is a vec3f
|
||
|
and m is a mat4f<br>
|
||
|
Last column is added as the position
|
||
|
*/
|
||
|
#define MAT_DOT_VEC_3X4(p, m, v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2] + m[0][3]; \
|
||
|
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2] + m[1][3]; \
|
||
|
p[2] = m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2] + m[2][3]; \
|
||
|
}
|
||
|
|
||
|
/*! vector transpose times matrix */
|
||
|
/*! p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j]; */
|
||
|
#define VEC_DOT_MAT_3X3(p, v, m) \
|
||
|
{ \
|
||
|
p[0] = v[0] * m[0][0] + v[1] * m[1][0] + v[2] * m[2][0]; \
|
||
|
p[1] = v[0] * m[0][1] + v[1] * m[1][1] + v[2] * m[2][1]; \
|
||
|
p[2] = v[0] * m[0][2] + v[1] * m[1][2] + v[2] * m[2][2]; \
|
||
|
}
|
||
|
|
||
|
/*! affine matrix times vector */
|
||
|
/** The matrix is assumed to be an affine matrix, with last two
|
||
|
* entries representing a translation */
|
||
|
#define MAT_DOT_VEC_2X3(p, m, v) \
|
||
|
{ \
|
||
|
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2]; \
|
||
|
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2]; \
|
||
|
}
|
||
|
|
||
|
//! Transform a plane
|
||
|
#define MAT_TRANSFORM_PLANE_4X4(pout, m, plane) \
|
||
|
{ \
|
||
|
pout[0] = m[0][0] * plane[0] + m[0][1] * plane[1] + m[0][2] * plane[2]; \
|
||
|
pout[1] = m[1][0] * plane[0] + m[1][1] * plane[1] + m[1][2] * plane[2]; \
|
||
|
pout[2] = m[2][0] * plane[0] + m[2][1] * plane[1] + m[2][2] * plane[2]; \
|
||
|
pout[3] = m[0][3] * pout[0] + m[1][3] * pout[1] + m[2][3] * pout[2] + plane[3]; \
|
||
|
}
|
||
|
|
||
|
/** inverse transpose of matrix times vector
|
||
|
*
|
||
|
* This macro computes inverse transpose of matrix m,
|
||
|
* and multiplies vector v into it, to yeild vector p
|
||
|
*
|
||
|
* DANGER !!! Do Not use this on normal vectors!!!
|
||
|
* It will leave normals the wrong length !!!
|
||
|
* See macro below for use on normals.
|
||
|
*/
|
||
|
#define INV_TRANSP_MAT_DOT_VEC_2X2(p, m, v) \
|
||
|
{ \
|
||
|
GREAL det; \
|
||
|
\
|
||
|
det = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
|
||
|
p[0] = m[1][1] * v[0] - m[1][0] * v[1]; \
|
||
|
p[1] = -m[0][1] * v[0] + m[0][0] * v[1]; \
|
||
|
\
|
||
|
/* if matrix not singular, and not orthonormal, then renormalize */ \
|
||
|
if ((det != 1.0f) && (det != 0.0f)) \
|
||
|
{ \
|
||
|
det = 1.0f / det; \
|
||
|
p[0] *= det; \
|
||
|
p[1] *= det; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/** transform normal vector by inverse transpose of matrix
|
||
|
* and then renormalize the vector
|
||
|
*
|
||
|
* This macro computes inverse transpose of matrix m,
|
||
|
* and multiplies vector v into it, to yeild vector p
|
||
|
* Vector p is then normalized.
|
||
|
*/
|
||
|
#define NORM_XFORM_2X2(p, m, v) \
|
||
|
{ \
|
||
|
GREAL len; \
|
||
|
\
|
||
|
/* do nothing if off-diagonals are zero and diagonals are \
|
||
|
* equal */ \
|
||
|
if ((m[0][1] != 0.0) || (m[1][0] != 0.0) || (m[0][0] != m[1][1])) \
|
||
|
{ \
|
||
|
p[0] = m[1][1] * v[0] - m[1][0] * v[1]; \
|
||
|
p[1] = -m[0][1] * v[0] + m[0][0] * v[1]; \
|
||
|
\
|
||
|
len = p[0] * p[0] + p[1] * p[1]; \
|
||
|
GIM_INV_SQRT(len, len); \
|
||
|
p[0] *= len; \
|
||
|
p[1] *= len; \
|
||
|
} \
|
||
|
else \
|
||
|
{ \
|
||
|
VEC_COPY_2(p, v); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/** outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
#define OUTER_PRODUCT_2X2(m, v, t) \
|
||
|
{ \
|
||
|
m[0][0] = v[0] * t[0]; \
|
||
|
m[0][1] = v[0] * t[1]; \
|
||
|
\
|
||
|
m[1][0] = v[1] * t[0]; \
|
||
|
m[1][1] = v[1] * t[1]; \
|
||
|
}
|
||
|
|
||
|
/** outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
#define OUTER_PRODUCT_3X3(m, v, t) \
|
||
|
{ \
|
||
|
m[0][0] = v[0] * t[0]; \
|
||
|
m[0][1] = v[0] * t[1]; \
|
||
|
m[0][2] = v[0] * t[2]; \
|
||
|
\
|
||
|
m[1][0] = v[1] * t[0]; \
|
||
|
m[1][1] = v[1] * t[1]; \
|
||
|
m[1][2] = v[1] * t[2]; \
|
||
|
\
|
||
|
m[2][0] = v[2] * t[0]; \
|
||
|
m[2][1] = v[2] * t[1]; \
|
||
|
m[2][2] = v[2] * t[2]; \
|
||
|
}
|
||
|
|
||
|
/** outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
#define OUTER_PRODUCT_4X4(m, v, t) \
|
||
|
{ \
|
||
|
m[0][0] = v[0] * t[0]; \
|
||
|
m[0][1] = v[0] * t[1]; \
|
||
|
m[0][2] = v[0] * t[2]; \
|
||
|
m[0][3] = v[0] * t[3]; \
|
||
|
\
|
||
|
m[1][0] = v[1] * t[0]; \
|
||
|
m[1][1] = v[1] * t[1]; \
|
||
|
m[1][2] = v[1] * t[2]; \
|
||
|
m[1][3] = v[1] * t[3]; \
|
||
|
\
|
||
|
m[2][0] = v[2] * t[0]; \
|
||
|
m[2][1] = v[2] * t[1]; \
|
||
|
m[2][2] = v[2] * t[2]; \
|
||
|
m[2][3] = v[2] * t[3]; \
|
||
|
\
|
||
|
m[3][0] = v[3] * t[0]; \
|
||
|
m[3][1] = v[3] * t[1]; \
|
||
|
m[3][2] = v[3] * t[2]; \
|
||
|
m[3][3] = v[3] * t[3]; \
|
||
|
}
|
||
|
|
||
|
/** outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
#define ACCUM_OUTER_PRODUCT_2X2(m, v, t) \
|
||
|
{ \
|
||
|
m[0][0] += v[0] * t[0]; \
|
||
|
m[0][1] += v[0] * t[1]; \
|
||
|
\
|
||
|
m[1][0] += v[1] * t[0]; \
|
||
|
m[1][1] += v[1] * t[1]; \
|
||
|
}
|
||
|
|
||
|
/** outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
#define ACCUM_OUTER_PRODUCT_3X3(m, v, t) \
|
||
|
{ \
|
||
|
m[0][0] += v[0] * t[0]; \
|
||
|
m[0][1] += v[0] * t[1]; \
|
||
|
m[0][2] += v[0] * t[2]; \
|
||
|
\
|
||
|
m[1][0] += v[1] * t[0]; \
|
||
|
m[1][1] += v[1] * t[1]; \
|
||
|
m[1][2] += v[1] * t[2]; \
|
||
|
\
|
||
|
m[2][0] += v[2] * t[0]; \
|
||
|
m[2][1] += v[2] * t[1]; \
|
||
|
m[2][2] += v[2] * t[2]; \
|
||
|
}
|
||
|
|
||
|
/** outer product of vector times vector transpose
|
||
|
*
|
||
|
* The outer product of vector v and vector transpose t yeilds
|
||
|
* dyadic matrix m.
|
||
|
*/
|
||
|
#define ACCUM_OUTER_PRODUCT_4X4(m, v, t) \
|
||
|
{ \
|
||
|
m[0][0] += v[0] * t[0]; \
|
||
|
m[0][1] += v[0] * t[1]; \
|
||
|
m[0][2] += v[0] * t[2]; \
|
||
|
m[0][3] += v[0] * t[3]; \
|
||
|
\
|
||
|
m[1][0] += v[1] * t[0]; \
|
||
|
m[1][1] += v[1] * t[1]; \
|
||
|
m[1][2] += v[1] * t[2]; \
|
||
|
m[1][3] += v[1] * t[3]; \
|
||
|
\
|
||
|
m[2][0] += v[2] * t[0]; \
|
||
|
m[2][1] += v[2] * t[1]; \
|
||
|
m[2][2] += v[2] * t[2]; \
|
||
|
m[2][3] += v[2] * t[3]; \
|
||
|
\
|
||
|
m[3][0] += v[3] * t[0]; \
|
||
|
m[3][1] += v[3] * t[1]; \
|
||
|
m[3][2] += v[3] * t[2]; \
|
||
|
m[3][3] += v[3] * t[3]; \
|
||
|
}
|
||
|
|
||
|
/** determinant of matrix
|
||
|
*
|
||
|
* Computes determinant of matrix m, returning d
|
||
|
*/
|
||
|
#define DETERMINANT_2X2(d, m) \
|
||
|
{ \
|
||
|
d = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
|
||
|
}
|
||
|
|
||
|
/** determinant of matrix
|
||
|
*
|
||
|
* Computes determinant of matrix m, returning d
|
||
|
*/
|
||
|
#define DETERMINANT_3X3(d, m) \
|
||
|
{ \
|
||
|
d = m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
|
||
|
d -= m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]); \
|
||
|
d += m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
|
||
|
}
|
||
|
|
||
|
/** i,j,th cofactor of a 4x4 matrix
|
||
|
*
|
||
|
*/
|
||
|
#define COFACTOR_4X4_IJ(fac, m, i, j) \
|
||
|
{ \
|
||
|
GUINT __ii[4], __jj[4], __k; \
|
||
|
\
|
||
|
for (__k = 0; __k < i; __k++) __ii[__k] = __k; \
|
||
|
for (__k = i; __k < 3; __k++) __ii[__k] = __k + 1; \
|
||
|
for (__k = 0; __k < j; __k++) __jj[__k] = __k; \
|
||
|
for (__k = j; __k < 3; __k++) __jj[__k] = __k + 1; \
|
||
|
\
|
||
|
(fac) = m[__ii[0]][__jj[0]] * (m[__ii[1]][__jj[1]] * m[__ii[2]][__jj[2]] - m[__ii[1]][__jj[2]] * m[__ii[2]][__jj[1]]); \
|
||
|
(fac) -= m[__ii[0]][__jj[1]] * (m[__ii[1]][__jj[0]] * m[__ii[2]][__jj[2]] - m[__ii[1]][__jj[2]] * m[__ii[2]][__jj[0]]); \
|
||
|
(fac) += m[__ii[0]][__jj[2]] * (m[__ii[1]][__jj[0]] * m[__ii[2]][__jj[1]] - m[__ii[1]][__jj[1]] * m[__ii[2]][__jj[0]]); \
|
||
|
\
|
||
|
__k = i + j; \
|
||
|
if (__k != (__k / 2) * 2) \
|
||
|
{ \
|
||
|
(fac) = -(fac); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/** determinant of matrix
|
||
|
*
|
||
|
* Computes determinant of matrix m, returning d
|
||
|
*/
|
||
|
#define DETERMINANT_4X4(d, m) \
|
||
|
{ \
|
||
|
GREAL cofac; \
|
||
|
COFACTOR_4X4_IJ(cofac, m, 0, 0); \
|
||
|
d = m[0][0] * cofac; \
|
||
|
COFACTOR_4X4_IJ(cofac, m, 0, 1); \
|
||
|
d += m[0][1] * cofac; \
|
||
|
COFACTOR_4X4_IJ(cofac, m, 0, 2); \
|
||
|
d += m[0][2] * cofac; \
|
||
|
COFACTOR_4X4_IJ(cofac, m, 0, 3); \
|
||
|
d += m[0][3] * cofac; \
|
||
|
}
|
||
|
|
||
|
/** cofactor of matrix
|
||
|
*
|
||
|
* Computes cofactor of matrix m, returning a
|
||
|
*/
|
||
|
#define COFACTOR_2X2(a, m) \
|
||
|
{ \
|
||
|
a[0][0] = (m)[1][1]; \
|
||
|
a[0][1] = -(m)[1][0]; \
|
||
|
a[1][0] = -(m)[0][1]; \
|
||
|
a[1][1] = (m)[0][0]; \
|
||
|
}
|
||
|
|
||
|
/** cofactor of matrix
|
||
|
*
|
||
|
* Computes cofactor of matrix m, returning a
|
||
|
*/
|
||
|
#define COFACTOR_3X3(a, m) \
|
||
|
{ \
|
||
|
a[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1]; \
|
||
|
a[0][1] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]); \
|
||
|
a[0][2] = m[1][0] * m[2][1] - m[1][1] * m[2][0]; \
|
||
|
a[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); \
|
||
|
a[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0]; \
|
||
|
a[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); \
|
||
|
a[2][0] = m[0][1] * m[1][2] - m[0][2] * m[1][1]; \
|
||
|
a[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); \
|
||
|
a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
|
||
|
}
|
||
|
|
||
|
/** cofactor of matrix
|
||
|
*
|
||
|
* Computes cofactor of matrix m, returning a
|
||
|
*/
|
||
|
#define COFACTOR_4X4(a, m) \
|
||
|
{ \
|
||
|
int i, j; \
|
||
|
\
|
||
|
for (i = 0; i < 4; i++) \
|
||
|
{ \
|
||
|
for (j = 0; j < 4; j++) \
|
||
|
{ \
|
||
|
COFACTOR_4X4_IJ(a[i][j], m, i, j); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/** adjoint of matrix
|
||
|
*
|
||
|
* Computes adjoint of matrix m, returning a
|
||
|
* (Note that adjoint is just the transpose of the cofactor matrix)
|
||
|
*/
|
||
|
#define ADJOINT_2X2(a, m) \
|
||
|
{ \
|
||
|
a[0][0] = (m)[1][1]; \
|
||
|
a[1][0] = -(m)[1][0]; \
|
||
|
a[0][1] = -(m)[0][1]; \
|
||
|
a[1][1] = (m)[0][0]; \
|
||
|
}
|
||
|
|
||
|
/** adjoint of matrix
|
||
|
*
|
||
|
* Computes adjoint of matrix m, returning a
|
||
|
* (Note that adjoint is just the transpose of the cofactor matrix)
|
||
|
*/
|
||
|
#define ADJOINT_3X3(a, m) \
|
||
|
{ \
|
||
|
a[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1]; \
|
||
|
a[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]); \
|
||
|
a[2][0] = m[1][0] * m[2][1] - m[1][1] * m[2][0]; \
|
||
|
a[0][1] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); \
|
||
|
a[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0]; \
|
||
|
a[2][1] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); \
|
||
|
a[0][2] = m[0][1] * m[1][2] - m[0][2] * m[1][1]; \
|
||
|
a[1][2] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); \
|
||
|
a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
|
||
|
}
|
||
|
|
||
|
/** adjoint of matrix
|
||
|
*
|
||
|
* Computes adjoint of matrix m, returning a
|
||
|
* (Note that adjoint is just the transpose of the cofactor matrix)
|
||
|
*/
|
||
|
#define ADJOINT_4X4(a, m) \
|
||
|
{ \
|
||
|
char _i_, _j_; \
|
||
|
\
|
||
|
for (_i_ = 0; _i_ < 4; _i_++) \
|
||
|
{ \
|
||
|
for (_j_ = 0; _j_ < 4; _j_++) \
|
||
|
{ \
|
||
|
COFACTOR_4X4_IJ(a[_j_][_i_], m, _i_, _j_); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/** compute adjoint of matrix and scale
|
||
|
*
|
||
|
* Computes adjoint of matrix m, scales it by s, returning a
|
||
|
*/
|
||
|
#define SCALE_ADJOINT_2X2(a, s, m) \
|
||
|
{ \
|
||
|
a[0][0] = (s)*m[1][1]; \
|
||
|
a[1][0] = -(s)*m[1][0]; \
|
||
|
a[0][1] = -(s)*m[0][1]; \
|
||
|
a[1][1] = (s)*m[0][0]; \
|
||
|
}
|
||
|
|
||
|
/** compute adjoint of matrix and scale
|
||
|
*
|
||
|
* Computes adjoint of matrix m, scales it by s, returning a
|
||
|
*/
|
||
|
#define SCALE_ADJOINT_3X3(a, s, m) \
|
||
|
{ \
|
||
|
a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
|
||
|
a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); \
|
||
|
a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
|
||
|
\
|
||
|
a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); \
|
||
|
a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); \
|
||
|
a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); \
|
||
|
\
|
||
|
a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); \
|
||
|
a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); \
|
||
|
a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); \
|
||
|
}
|
||
|
|
||
|
/** compute adjoint of matrix and scale
|
||
|
*
|
||
|
* Computes adjoint of matrix m, scales it by s, returning a
|
||
|
*/
|
||
|
#define SCALE_ADJOINT_4X4(a, s, m) \
|
||
|
{ \
|
||
|
char _i_, _j_; \
|
||
|
for (_i_ = 0; _i_ < 4; _i_++) \
|
||
|
{ \
|
||
|
for (_j_ = 0; _j_ < 4; _j_++) \
|
||
|
{ \
|
||
|
COFACTOR_4X4_IJ(a[_j_][_i_], m, _i_, _j_); \
|
||
|
a[_j_][_i_] *= s; \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/** inverse of matrix
|
||
|
*
|
||
|
* Compute inverse of matrix a, returning determinant m and
|
||
|
* inverse b
|
||
|
*/
|
||
|
#define INVERT_2X2(b, det, a) \
|
||
|
{ \
|
||
|
GREAL _tmp_; \
|
||
|
DETERMINANT_2X2(det, a); \
|
||
|
_tmp_ = 1.0 / (det); \
|
||
|
SCALE_ADJOINT_2X2(b, _tmp_, a); \
|
||
|
}
|
||
|
|
||
|
/** inverse of matrix
|
||
|
*
|
||
|
* Compute inverse of matrix a, returning determinant m and
|
||
|
* inverse b
|
||
|
*/
|
||
|
#define INVERT_3X3(b, det, a) \
|
||
|
{ \
|
||
|
GREAL _tmp_; \
|
||
|
DETERMINANT_3X3(det, a); \
|
||
|
_tmp_ = 1.0 / (det); \
|
||
|
SCALE_ADJOINT_3X3(b, _tmp_, a); \
|
||
|
}
|
||
|
|
||
|
/** inverse of matrix
|
||
|
*
|
||
|
* Compute inverse of matrix a, returning determinant m and
|
||
|
* inverse b
|
||
|
*/
|
||
|
#define INVERT_4X4(b, det, a) \
|
||
|
{ \
|
||
|
GREAL _tmp_; \
|
||
|
DETERMINANT_4X4(det, a); \
|
||
|
_tmp_ = 1.0 / (det); \
|
||
|
SCALE_ADJOINT_4X4(b, _tmp_, a); \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) row of a transform matrix
|
||
|
#define MAT_GET_ROW(mat, vec3, rowindex) \
|
||
|
{ \
|
||
|
vec3[0] = mat[rowindex][0]; \
|
||
|
vec3[1] = mat[rowindex][1]; \
|
||
|
vec3[2] = mat[rowindex][2]; \
|
||
|
}
|
||
|
|
||
|
//! Get the tuple(2) row of a transform matrix
|
||
|
#define MAT_GET_ROW2(mat, vec2, rowindex) \
|
||
|
{ \
|
||
|
vec2[0] = mat[rowindex][0]; \
|
||
|
vec2[1] = mat[rowindex][1]; \
|
||
|
}
|
||
|
|
||
|
//! Get the quad (4) row of a transform matrix
|
||
|
#define MAT_GET_ROW4(mat, vec4, rowindex) \
|
||
|
{ \
|
||
|
vec4[0] = mat[rowindex][0]; \
|
||
|
vec4[1] = mat[rowindex][1]; \
|
||
|
vec4[2] = mat[rowindex][2]; \
|
||
|
vec4[3] = mat[rowindex][3]; \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_GET_COL(mat, vec3, colindex) \
|
||
|
{ \
|
||
|
vec3[0] = mat[0][colindex]; \
|
||
|
vec3[1] = mat[1][colindex]; \
|
||
|
vec3[2] = mat[2][colindex]; \
|
||
|
}
|
||
|
|
||
|
//! Get the tuple(2) col of a transform matrix
|
||
|
#define MAT_GET_COL2(mat, vec2, colindex) \
|
||
|
{ \
|
||
|
vec2[0] = mat[0][colindex]; \
|
||
|
vec2[1] = mat[1][colindex]; \
|
||
|
}
|
||
|
|
||
|
//! Get the quad (4) col of a transform matrix
|
||
|
#define MAT_GET_COL4(mat, vec4, colindex) \
|
||
|
{ \
|
||
|
vec4[0] = mat[0][colindex]; \
|
||
|
vec4[1] = mat[1][colindex]; \
|
||
|
vec4[2] = mat[2][colindex]; \
|
||
|
vec4[3] = mat[3][colindex]; \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_GET_X(mat, vec3) \
|
||
|
{ \
|
||
|
MAT_GET_COL(mat, vec3, 0); \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_GET_Y(mat, vec3) \
|
||
|
{ \
|
||
|
MAT_GET_COL(mat, vec3, 1); \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_GET_Z(mat, vec3) \
|
||
|
{ \
|
||
|
MAT_GET_COL(mat, vec3, 2); \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_SET_X(mat, vec3) \
|
||
|
{ \
|
||
|
mat[0][0] = vec3[0]; \
|
||
|
mat[1][0] = vec3[1]; \
|
||
|
mat[2][0] = vec3[2]; \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_SET_Y(mat, vec3) \
|
||
|
{ \
|
||
|
mat[0][1] = vec3[0]; \
|
||
|
mat[1][1] = vec3[1]; \
|
||
|
mat[2][1] = vec3[2]; \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_SET_Z(mat, vec3) \
|
||
|
{ \
|
||
|
mat[0][2] = vec3[0]; \
|
||
|
mat[1][2] = vec3[1]; \
|
||
|
mat[2][2] = vec3[2]; \
|
||
|
}
|
||
|
|
||
|
//! Get the triple(3) col of a transform matrix
|
||
|
#define MAT_GET_TRANSLATION(mat, vec3) \
|
||
|
{ \
|
||
|
vec3[0] = mat[0][3]; \
|
||
|
vec3[1] = mat[1][3]; \
|
||
|
vec3[2] = mat[2][3]; \
|
||
|
}
|
||
|
|
||
|
//! Set the triple(3) col of a transform matrix
|
||
|
#define MAT_SET_TRANSLATION(mat, vec3) \
|
||
|
{ \
|
||
|
mat[0][3] = vec3[0]; \
|
||
|
mat[1][3] = vec3[1]; \
|
||
|
mat[2][3] = vec3[2]; \
|
||
|
}
|
||
|
|
||
|
//! Returns the dot product between a vec3f and the row of a matrix
|
||
|
#define MAT_DOT_ROW(mat, vec3, rowindex) (vec3[0] * mat[rowindex][0] + vec3[1] * mat[rowindex][1] + vec3[2] * mat[rowindex][2])
|
||
|
|
||
|
//! Returns the dot product between a vec2f and the row of a matrix
|
||
|
#define MAT_DOT_ROW2(mat, vec2, rowindex) (vec2[0] * mat[rowindex][0] + vec2[1] * mat[rowindex][1])
|
||
|
|
||
|
//! Returns the dot product between a vec4f and the row of a matrix
|
||
|
#define MAT_DOT_ROW4(mat, vec4, rowindex) (vec4[0] * mat[rowindex][0] + vec4[1] * mat[rowindex][1] + vec4[2] * mat[rowindex][2] + vec4[3] * mat[rowindex][3])
|
||
|
|
||
|
//! Returns the dot product between a vec3f and the col of a matrix
|
||
|
#define MAT_DOT_COL(mat, vec3, colindex) (vec3[0] * mat[0][colindex] + vec3[1] * mat[1][colindex] + vec3[2] * mat[2][colindex])
|
||
|
|
||
|
//! Returns the dot product between a vec2f and the col of a matrix
|
||
|
#define MAT_DOT_COL2(mat, vec2, colindex) (vec2[0] * mat[0][colindex] + vec2[1] * mat[1][colindex])
|
||
|
|
||
|
//! Returns the dot product between a vec4f and the col of a matrix
|
||
|
#define MAT_DOT_COL4(mat, vec4, colindex) (vec4[0] * mat[0][colindex] + vec4[1] * mat[1][colindex] + vec4[2] * mat[2][colindex] + vec4[3] * mat[3][colindex])
|
||
|
|
||
|
/*!Transpose matrix times vector
|
||
|
v is a vec3f
|
||
|
and m is a mat4f<br>
|
||
|
*/
|
||
|
#define INV_MAT_DOT_VEC_3X3(p, m, v) \
|
||
|
{ \
|
||
|
p[0] = MAT_DOT_COL(m, v, 0); \
|
||
|
p[1] = MAT_DOT_COL(m, v, 1); \
|
||
|
p[2] = MAT_DOT_COL(m, v, 2); \
|
||
|
}
|
||
|
|
||
|
#endif // GIM_VECTOR_H_INCLUDED
|