axmol/thirdparty/box2d-optimized/src/dynamics/b2_wheel_joint.cpp

673 lines
16 KiB
C++
Raw Normal View History

// MIT License
// Copyright (c) 2019 Erin Catto
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "box2d/b2_body.h"
#include "box2d/b2_draw.h"
#include "box2d/b2_wheel_joint.h"
#include "box2d/b2_time_step.h"
// Linear constraint (point-to-line)
// d = pB - pA = xB + rB - xA - rA
// C = dot(ay, d)
// Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA))
// = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB)
// J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)]
// Spring linear constraint
// C = dot(ax, d)
// Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB)
// J = [-ax -cross(d+rA, ax) ax cross(rB, ax)]
// Motor rotational constraint
// Cdot = wB - wA
// J = [0 0 -1 0 0 1]
void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis)
{
bodyA = bA;
bodyB = bB;
localAnchorA = bodyA->GetLocalPoint(anchor);
localAnchorB = bodyB->GetLocalPoint(anchor);
localAxisA = bodyA->GetLocalVector(axis);
}
b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def)
: b2Joint(def)
{
m_localAnchorA = def->localAnchorA;
m_localAnchorB = def->localAnchorB;
m_localXAxisA = def->localAxisA;
m_localYAxisA = b2Cross(1.0f, m_localXAxisA);
m_mass = 0.0f;
m_impulse = 0.0f;
m_motorMass = 0.0f;
m_motorImpulse = 0.0f;
m_springMass = 0.0f;
m_springImpulse = 0.0f;
m_axialMass = 0.0f;
m_lowerImpulse = 0.0f;
m_upperImpulse = 0.0f;
m_lowerTranslation = def->lowerTranslation;
m_upperTranslation = def->upperTranslation;
m_enableLimit = def->enableLimit;
m_maxMotorTorque = def->maxMotorTorque;
m_motorSpeed = def->motorSpeed;
m_enableMotor = def->enableMotor;
m_bias = 0.0f;
m_gamma = 0.0f;
m_ax.SetZero();
m_ay.SetZero();
m_stiffness = def->stiffness;
m_damping = def->damping;
}
void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data)
{
m_indexA = m_bodyA->m_islandIndex;
m_indexB = m_bodyB->m_islandIndex;
m_localCenterA = m_bodyA->m_sweep.localCenter;
m_localCenterB = m_bodyB->m_sweep.localCenter;
m_invMassA = m_bodyA->m_invMass;
m_invMassB = m_bodyB->m_invMass;
m_invIA = m_bodyA->m_invI;
m_invIB = m_bodyB->m_invI;
float mA = m_invMassA, mB = m_invMassB;
float iA = m_invIA, iB = m_invIB;
b2Vec2 cA = data.positions[m_indexA].c;
float aA = data.positions[m_indexA].a;
b2Vec2 vA = data.velocities[m_indexA].v;
float wA = data.velocities[m_indexA].w;
b2Vec2 cB = data.positions[m_indexB].c;
float aB = data.positions[m_indexB].a;
b2Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
b2Rot qA(aA), qB(aB);
// Compute the effective masses.
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
b2Vec2 d = cB + rB - cA - rA;
// Point to line constraint
{
m_ay = b2Mul(qA, m_localYAxisA);
m_sAy = b2Cross(d + rA, m_ay);
m_sBy = b2Cross(rB, m_ay);
m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy;
if (m_mass > 0.0f)
{
m_mass = 1.0f / m_mass;
}
}
// Spring constraint
m_ax = b2Mul(qA, m_localXAxisA);
m_sAx = b2Cross(d + rA, m_ax);
m_sBx = b2Cross(rB, m_ax);
const float invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx;
if (invMass > 0.0f)
{
m_axialMass = 1.0f / invMass;
}
else
{
m_axialMass = 0.0f;
}
m_springMass = 0.0f;
m_bias = 0.0f;
m_gamma = 0.0f;
if (m_stiffness > 0.0f && invMass > 0.0f)
{
m_springMass = 1.0f / invMass;
float C = b2Dot(d, m_ax);
// magic formulas
float h = data.step.dt;
m_gamma = h * (m_damping + h * m_stiffness);
if (m_gamma > 0.0f)
{
m_gamma = 1.0f / m_gamma;
}
m_bias = C * h * m_stiffness * m_gamma;
m_springMass = invMass + m_gamma;
if (m_springMass > 0.0f)
{
m_springMass = 1.0f / m_springMass;
}
}
else
{
m_springImpulse = 0.0f;
}
if (m_enableLimit)
{
m_translation = b2Dot(m_ax, d);
}
else
{
m_lowerImpulse = 0.0f;
m_upperImpulse = 0.0f;
}
if (m_enableMotor)
{
m_motorMass = iA + iB;
if (m_motorMass > 0.0f)
{
m_motorMass = 1.0f / m_motorMass;
}
}
else
{
m_motorMass = 0.0f;
m_motorImpulse = 0.0f;
}
if (data.step.warmStarting)
{
// Account for variable time step.
m_impulse *= data.step.dtRatio;
m_springImpulse *= data.step.dtRatio;
m_motorImpulse *= data.step.dtRatio;
float axialImpulse = m_springImpulse + m_lowerImpulse - m_upperImpulse;
b2Vec2 P = m_impulse * m_ay + axialImpulse * m_ax;
float LA = m_impulse * m_sAy + axialImpulse * m_sAx + m_motorImpulse;
float LB = m_impulse * m_sBy + axialImpulse * m_sBx + m_motorImpulse;
vA -= m_invMassA * P;
wA -= m_invIA * LA;
vB += m_invMassB * P;
wB += m_invIB * LB;
}
else
{
m_impulse = 0.0f;
m_springImpulse = 0.0f;
m_motorImpulse = 0.0f;
m_lowerImpulse = 0.0f;
m_upperImpulse = 0.0f;
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data)
{
float mA = m_invMassA, mB = m_invMassB;
float iA = m_invIA, iB = m_invIB;
b2Vec2 vA = data.velocities[m_indexA].v;
float wA = data.velocities[m_indexA].w;
b2Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
// Solve spring constraint
{
float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA;
float impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse);
m_springImpulse += impulse;
b2Vec2 P = impulse * m_ax;
float LA = impulse * m_sAx;
float LB = impulse * m_sBx;
vA -= mA * P;
wA -= iA * LA;
vB += mB * P;
wB += iB * LB;
}
// Solve rotational motor constraint
{
float Cdot = wB - wA - m_motorSpeed;
float impulse = -m_motorMass * Cdot;
float oldImpulse = m_motorImpulse;
float maxImpulse = data.step.dt * m_maxMotorTorque;
m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
impulse = m_motorImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
if (m_enableLimit)
{
// Lower limit
{
float C = m_translation - m_lowerTranslation;
float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA;
float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
float oldImpulse = m_lowerImpulse;
m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f);
impulse = m_lowerImpulse - oldImpulse;
b2Vec2 P = impulse * m_ax;
float LA = impulse * m_sAx;
float LB = impulse * m_sBx;
vA -= mA * P;
wA -= iA * LA;
vB += mB * P;
wB += iB * LB;
}
// Upper limit
// Note: signs are flipped to keep C positive when the constraint is satisfied.
// This also keeps the impulse positive when the limit is active.
{
float C = m_upperTranslation - m_translation;
float Cdot = b2Dot(m_ax, vA - vB) + m_sAx * wA - m_sBx * wB;
float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
float oldImpulse = m_upperImpulse;
m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f);
impulse = m_upperImpulse - oldImpulse;
b2Vec2 P = impulse * m_ax;
float LA = impulse * m_sAx;
float LB = impulse * m_sBx;
vA += mA * P;
wA += iA * LA;
vB -= mB * P;
wB -= iB * LB;
}
}
// Solve point to line constraint
{
float Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA;
float impulse = -m_mass * Cdot;
m_impulse += impulse;
b2Vec2 P = impulse * m_ay;
float LA = impulse * m_sAy;
float LB = impulse * m_sBy;
vA -= mA * P;
wA -= iA * LA;
vB += mB * P;
wB += iB * LB;
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data)
{
b2Vec2 cA = data.positions[m_indexA].c;
float aA = data.positions[m_indexA].a;
b2Vec2 cB = data.positions[m_indexB].c;
float aB = data.positions[m_indexB].a;
float linearError = 0.0f;
if (m_enableLimit)
{
b2Rot qA(aA), qB(aB);
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
b2Vec2 d = (cB - cA) + rB - rA;
b2Vec2 ax = b2Mul(qA, m_localXAxisA);
float sAx = b2Cross(d + rA, m_ax);
float sBx = b2Cross(rB, m_ax);
float C = 0.0f;
float translation = b2Dot(ax, d);
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
{
C = translation;
}
else if (translation <= m_lowerTranslation)
{
C = b2Min(translation - m_lowerTranslation, 0.0f);
}
else if (translation >= m_upperTranslation)
{
C = b2Max(translation - m_upperTranslation, 0.0f);
}
if (C != 0.0f)
{
float invMass = m_invMassA + m_invMassB + m_invIA * sAx * sAx + m_invIB * sBx * sBx;
float impulse = 0.0f;
if (invMass != 0.0f)
{
impulse = -C / invMass;
}
b2Vec2 P = impulse * ax;
float LA = impulse * sAx;
float LB = impulse * sBx;
cA -= m_invMassA * P;
aA -= m_invIA * LA;
cB += m_invMassB * P;
aB += m_invIB * LB;
linearError = b2Abs(C);
}
}
// Solve perpendicular constraint
{
b2Rot qA(aA), qB(aB);
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
b2Vec2 d = (cB - cA) + rB - rA;
b2Vec2 ay = b2Mul(qA, m_localYAxisA);
float sAy = b2Cross(d + rA, ay);
float sBy = b2Cross(rB, ay);
float C = b2Dot(d, ay);
float invMass = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy;
float impulse = 0.0f;
if (invMass != 0.0f)
{
impulse = - C / invMass;
}
b2Vec2 P = impulse * ay;
float LA = impulse * sAy;
float LB = impulse * sBy;
cA -= m_invMassA * P;
aA -= m_invIA * LA;
cB += m_invMassB * P;
aB += m_invIB * LB;
linearError = b2Max(linearError, b2Abs(C));
}
data.positions[m_indexA].c = cA;
data.positions[m_indexA].a = aA;
data.positions[m_indexB].c = cB;
data.positions[m_indexB].a = aB;
return linearError <= b2_linearSlop;
}
b2Vec2 b2WheelJoint::GetAnchorA() const
{
return m_bodyA->GetWorldPoint(m_localAnchorA);
}
b2Vec2 b2WheelJoint::GetAnchorB() const
{
return m_bodyB->GetWorldPoint(m_localAnchorB);
}
b2Vec2 b2WheelJoint::GetReactionForce(float inv_dt) const
{
return inv_dt * (m_impulse * m_ay + (m_springImpulse + m_lowerImpulse - m_upperImpulse) * m_ax);
}
float b2WheelJoint::GetReactionTorque(float inv_dt) const
{
return inv_dt * m_motorImpulse;
}
float b2WheelJoint::GetJointTranslation() const
{
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA);
b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB);
b2Vec2 d = pB - pA;
b2Vec2 axis = bA->GetWorldVector(m_localXAxisA);
float translation = b2Dot(d, axis);
return translation;
}
float b2WheelJoint::GetJointLinearSpeed() const
{
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter);
b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter);
b2Vec2 p1 = bA->m_sweep.c + rA;
b2Vec2 p2 = bB->m_sweep.c + rB;
b2Vec2 d = p2 - p1;
b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA);
b2Vec2 vA = bA->m_linearVelocity;
b2Vec2 vB = bB->m_linearVelocity;
float wA = bA->m_angularVelocity;
float wB = bB->m_angularVelocity;
float speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA));
return speed;
}
float b2WheelJoint::GetJointAngle() const
{
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
return bB->m_sweep.a - bA->m_sweep.a;
}
float b2WheelJoint::GetJointAngularSpeed() const
{
float wA = m_bodyA->m_angularVelocity;
float wB = m_bodyB->m_angularVelocity;
return wB - wA;
}
bool b2WheelJoint::IsLimitEnabled() const
{
return m_enableLimit;
}
void b2WheelJoint::EnableLimit(bool flag)
{
if (flag != m_enableLimit)
{
SET_AWAKE_OR_NONE(m_bodyA);
SET_AWAKE_OR_NONE(m_bodyB);
m_enableLimit = flag;
m_lowerImpulse = 0.0f;
m_upperImpulse = 0.0f;
}
}
float b2WheelJoint::GetLowerLimit() const
{
return m_lowerTranslation;
}
float b2WheelJoint::GetUpperLimit() const
{
return m_upperTranslation;
}
void b2WheelJoint::SetLimits(float lower, float upper)
{
b2Assert(lower <= upper);
if (lower != m_lowerTranslation || upper != m_upperTranslation)
{
SET_AWAKE_OR_NONE(m_bodyA);
SET_AWAKE_OR_NONE(m_bodyB);
m_lowerTranslation = lower;
m_upperTranslation = upper;
m_lowerImpulse = 0.0f;
m_upperImpulse = 0.0f;
}
}
bool b2WheelJoint::IsMotorEnabled() const
{
return m_enableMotor;
}
void b2WheelJoint::EnableMotor(bool flag)
{
if (flag != m_enableMotor)
{
SET_AWAKE_OR_NONE(m_bodyA);
SET_AWAKE_OR_NONE(m_bodyB);
m_enableMotor = flag;
}
}
void b2WheelJoint::SetMotorSpeed(float speed)
{
if (speed != m_motorSpeed)
{
SET_AWAKE_OR_NONE(m_bodyA);
SET_AWAKE_OR_NONE(m_bodyB);
m_motorSpeed = speed;
}
}
void b2WheelJoint::SetMaxMotorTorque(float torque)
{
if (torque != m_maxMotorTorque)
{
SET_AWAKE_OR_NONE(m_bodyA);
SET_AWAKE_OR_NONE(m_bodyB);
m_maxMotorTorque = torque;
}
}
float b2WheelJoint::GetMotorTorque(float inv_dt) const
{
return inv_dt * m_motorImpulse;
}
void b2WheelJoint::SetStiffness(float stiffness)
{
m_stiffness = stiffness;
}
float b2WheelJoint::GetStiffness() const
{
return m_stiffness;
}
void b2WheelJoint::SetDamping(float damping)
{
m_damping = damping;
}
float b2WheelJoint::GetDamping() const
{
return m_damping;
}
void b2WheelJoint::Dump()
{
// FLT_DECIMAL_DIG == 9
int32 indexA = m_bodyA->m_islandIndex;
int32 indexB = m_bodyB->m_islandIndex;
b2Dump(" b2WheelJointDef jd;\n");
b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
b2Dump(" jd.localAxisA.Set(%.9g, %.9g);\n", m_localXAxisA.x, m_localXAxisA.y);
b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor);
b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed);
b2Dump(" jd.maxMotorTorque = %.9g;\n", m_maxMotorTorque);
b2Dump(" jd.stiffness = %.9g;\n", m_stiffness);
b2Dump(" jd.damping = %.9g;\n", m_damping);
b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
}
///
void b2WheelJoint::Draw(b2Draw* draw) const
{
const b2Transform& xfA = m_bodyA->GetTransform();
const b2Transform& xfB = m_bodyB->GetTransform();
b2Vec2 pA = b2Mul(xfA, m_localAnchorA);
b2Vec2 pB = b2Mul(xfB, m_localAnchorB);
b2Vec2 axis = b2Mul(xfA.q, m_localXAxisA);
b2Color c1(0.7f, 0.7f, 0.7f);
b2Color c2(0.3f, 0.9f, 0.3f);
b2Color c3(0.9f, 0.3f, 0.3f);
b2Color c4(0.3f, 0.3f, 0.9f);
b2Color c5(0.4f, 0.4f, 0.4f);
draw->DrawSegment(pA, pB, c5);
if (m_enableLimit)
{
b2Vec2 lower = pA + m_lowerTranslation * axis;
b2Vec2 upper = pA + m_upperTranslation * axis;
b2Vec2 perp = b2Mul(xfA.q, m_localYAxisA);
draw->DrawSegment(lower, upper, c1);
draw->DrawSegment(lower - 0.5f * perp, lower + 0.5f * perp, c2);
draw->DrawSegment(upper - 0.5f * perp, upper + 0.5f * perp, c3);
}
else
{
draw->DrawSegment(pA - 1.0f * axis, pA + 1.0f * axis, c1);
}
draw->DrawPoint(pA, 5.0f, c1);
draw->DrawPoint(pB, 5.0f, c4);
}