mirror of https://github.com/axmolengine/axmol.git
625 lines
15 KiB
C
625 lines
15 KiB
C
|
/*
|
||
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||
|
*
|
||
|
* This software is provided 'as-is', without any express or implied
|
||
|
* warranty. In no event will the authors be held liable for any damages
|
||
|
* arising from the use of this software.
|
||
|
* Permission is granted to anyone to use this software for any purpose,
|
||
|
* including commercial applications, and to alter it and redistribute it
|
||
|
* freely, subject to the following restrictions:
|
||
|
* 1. The origin of this software must not be misrepresented; you must not
|
||
|
* claim that you wrote the original software. If you use this software
|
||
|
* in a product, an acknowledgment in the product documentation would be
|
||
|
* appreciated but is not required.
|
||
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
||
|
* misrepresented as being the original software.
|
||
|
* 3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
#ifndef B2_MATH_H
|
||
|
#define B2_MATH_H
|
||
|
|
||
|
#include <Box2D/Common/b2Settings.h>
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <cfloat>
|
||
|
#include <cstddef>
|
||
|
#include <limits>
|
||
|
|
||
|
/// This function is used to ensure that a floating point number is
|
||
|
/// not a NaN or infinity.
|
||
|
inline bool b2IsValid(float32 x)
|
||
|
{
|
||
|
if (x != x)
|
||
|
{
|
||
|
// NaN.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
float32 infinity = std::numeric_limits<float32>::infinity();
|
||
|
return -infinity < x && x < infinity;
|
||
|
}
|
||
|
|
||
|
/// This is a approximate yet fast inverse square-root.
|
||
|
inline float32 b2InvSqrt(float32 x)
|
||
|
{
|
||
|
union
|
||
|
{
|
||
|
float32 x;
|
||
|
int32 i;
|
||
|
} convert;
|
||
|
|
||
|
convert.x = x;
|
||
|
float32 xhalf = 0.5f * x;
|
||
|
convert.i = 0x5f3759df - (convert.i >> 1);
|
||
|
x = convert.x;
|
||
|
x = x * (1.5f - xhalf * x * x);
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
#define b2Sqrt(x) sqrtf(x)
|
||
|
#define b2Atan2(y, x) atan2f(y, x)
|
||
|
|
||
|
inline float32 b2Abs(float32 a)
|
||
|
{
|
||
|
return a > 0.0f ? a : -a;
|
||
|
}
|
||
|
|
||
|
/// A 2D column vector.
|
||
|
struct b2Vec2
|
||
|
{
|
||
|
/// Default constructor does nothing (for performance).
|
||
|
b2Vec2() {}
|
||
|
|
||
|
/// Construct using coordinates.
|
||
|
b2Vec2(float32 x, float32 y) : x(x), y(y) {}
|
||
|
|
||
|
/// Set this vector to all zeros.
|
||
|
void SetZero() { x = 0.0f; y = 0.0f; }
|
||
|
|
||
|
/// Set this vector to some specified coordinates.
|
||
|
void Set(float32 x_, float32 y_) { x = x_; y = y_; }
|
||
|
|
||
|
/// Negate this vector.
|
||
|
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
|
||
|
|
||
|
/// Read from and indexed element.
|
||
|
float32 operator () (int32 i) const
|
||
|
{
|
||
|
return (&x)[i];
|
||
|
}
|
||
|
|
||
|
/// Write to an indexed element.
|
||
|
float32& operator () (int32 i)
|
||
|
{
|
||
|
return (&x)[i];
|
||
|
}
|
||
|
|
||
|
/// Add a vector to this vector.
|
||
|
void operator += (const b2Vec2& v)
|
||
|
{
|
||
|
x += v.x; y += v.y;
|
||
|
}
|
||
|
|
||
|
/// Subtract a vector from this vector.
|
||
|
void operator -= (const b2Vec2& v)
|
||
|
{
|
||
|
x -= v.x; y -= v.y;
|
||
|
}
|
||
|
|
||
|
/// Multiply this vector by a scalar.
|
||
|
void operator *= (float32 a)
|
||
|
{
|
||
|
x *= a; y *= a;
|
||
|
}
|
||
|
|
||
|
/// Get the length of this vector (the norm).
|
||
|
float32 Length() const
|
||
|
{
|
||
|
return b2Sqrt(x * x + y * y);
|
||
|
}
|
||
|
|
||
|
/// Get the length squared. For performance, use this instead of
|
||
|
/// b2Vec2::Length (if possible).
|
||
|
float32 LengthSquared() const
|
||
|
{
|
||
|
return x * x + y * y;
|
||
|
}
|
||
|
|
||
|
/// Convert this vector into a unit vector. Returns the length.
|
||
|
float32 Normalize()
|
||
|
{
|
||
|
float32 length = Length();
|
||
|
if (length < b2_epsilon)
|
||
|
{
|
||
|
return 0.0f;
|
||
|
}
|
||
|
float32 invLength = 1.0f / length;
|
||
|
x *= invLength;
|
||
|
y *= invLength;
|
||
|
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
/// Does this vector contain finite coordinates?
|
||
|
bool IsValid() const
|
||
|
{
|
||
|
return b2IsValid(x) && b2IsValid(y);
|
||
|
}
|
||
|
|
||
|
float32 x, y;
|
||
|
};
|
||
|
|
||
|
/// A 2D column vector with 3 elements.
|
||
|
struct b2Vec3
|
||
|
{
|
||
|
/// Default constructor does nothing (for performance).
|
||
|
b2Vec3() {}
|
||
|
|
||
|
/// Construct using coordinates.
|
||
|
b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {}
|
||
|
|
||
|
/// Set this vector to all zeros.
|
||
|
void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
|
||
|
|
||
|
/// Set this vector to some specified coordinates.
|
||
|
void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
|
||
|
|
||
|
/// Negate this vector.
|
||
|
b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
|
||
|
|
||
|
/// Add a vector to this vector.
|
||
|
void operator += (const b2Vec3& v)
|
||
|
{
|
||
|
x += v.x; y += v.y; z += v.z;
|
||
|
}
|
||
|
|
||
|
/// Subtract a vector from this vector.
|
||
|
void operator -= (const b2Vec3& v)
|
||
|
{
|
||
|
x -= v.x; y -= v.y; z -= v.z;
|
||
|
}
|
||
|
|
||
|
/// Multiply this vector by a scalar.
|
||
|
void operator *= (float32 s)
|
||
|
{
|
||
|
x *= s; y *= s; z *= s;
|
||
|
}
|
||
|
|
||
|
float32 x, y, z;
|
||
|
};
|
||
|
|
||
|
/// A 2-by-2 matrix. Stored in column-major order.
|
||
|
struct b2Mat22
|
||
|
{
|
||
|
/// The default constructor does nothing (for performance).
|
||
|
b2Mat22() {}
|
||
|
|
||
|
/// Construct this matrix using columns.
|
||
|
b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
|
||
|
{
|
||
|
col1 = c1;
|
||
|
col2 = c2;
|
||
|
}
|
||
|
|
||
|
/// Construct this matrix using scalars.
|
||
|
b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
|
||
|
{
|
||
|
col1.x = a11; col1.y = a21;
|
||
|
col2.x = a12; col2.y = a22;
|
||
|
}
|
||
|
|
||
|
/// Construct this matrix using an angle. This matrix becomes
|
||
|
/// an orthonormal rotation matrix.
|
||
|
explicit b2Mat22(float32 angle)
|
||
|
{
|
||
|
// TODO_ERIN compute sin+cos together.
|
||
|
float32 c = cosf(angle), s = sinf(angle);
|
||
|
col1.x = c; col2.x = -s;
|
||
|
col1.y = s; col2.y = c;
|
||
|
}
|
||
|
|
||
|
/// Initialize this matrix using columns.
|
||
|
void Set(const b2Vec2& c1, const b2Vec2& c2)
|
||
|
{
|
||
|
col1 = c1;
|
||
|
col2 = c2;
|
||
|
}
|
||
|
|
||
|
/// Initialize this matrix using an angle. This matrix becomes
|
||
|
/// an orthonormal rotation matrix.
|
||
|
void Set(float32 angle)
|
||
|
{
|
||
|
float32 c = cosf(angle), s = sinf(angle);
|
||
|
col1.x = c; col2.x = -s;
|
||
|
col1.y = s; col2.y = c;
|
||
|
}
|
||
|
|
||
|
/// Set this to the identity matrix.
|
||
|
void SetIdentity()
|
||
|
{
|
||
|
col1.x = 1.0f; col2.x = 0.0f;
|
||
|
col1.y = 0.0f; col2.y = 1.0f;
|
||
|
}
|
||
|
|
||
|
/// Set this matrix to all zeros.
|
||
|
void SetZero()
|
||
|
{
|
||
|
col1.x = 0.0f; col2.x = 0.0f;
|
||
|
col1.y = 0.0f; col2.y = 0.0f;
|
||
|
}
|
||
|
|
||
|
/// Extract the angle from this matrix (assumed to be
|
||
|
/// a rotation matrix).
|
||
|
float32 GetAngle() const
|
||
|
{
|
||
|
return b2Atan2(col1.y, col1.x);
|
||
|
}
|
||
|
|
||
|
b2Mat22 GetInverse() const
|
||
|
{
|
||
|
float32 a = col1.x, b = col2.x, c = col1.y, d = col2.y;
|
||
|
b2Mat22 B;
|
||
|
float32 det = a * d - b * c;
|
||
|
if (det != 0.0f)
|
||
|
{
|
||
|
det = 1.0f / det;
|
||
|
}
|
||
|
B.col1.x = det * d; B.col2.x = -det * b;
|
||
|
B.col1.y = -det * c; B.col2.y = det * a;
|
||
|
return B;
|
||
|
}
|
||
|
|
||
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
||
|
/// than computing the inverse in one-shot cases.
|
||
|
b2Vec2 Solve(const b2Vec2& b) const
|
||
|
{
|
||
|
float32 a11 = col1.x, a12 = col2.x, a21 = col1.y, a22 = col2.y;
|
||
|
float32 det = a11 * a22 - a12 * a21;
|
||
|
if (det != 0.0f)
|
||
|
{
|
||
|
det = 1.0f / det;
|
||
|
}
|
||
|
b2Vec2 x;
|
||
|
x.x = det * (a22 * b.x - a12 * b.y);
|
||
|
x.y = det * (a11 * b.y - a21 * b.x);
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
b2Vec2 col1, col2;
|
||
|
};
|
||
|
|
||
|
/// A 3-by-3 matrix. Stored in column-major order.
|
||
|
struct b2Mat33
|
||
|
{
|
||
|
/// The default constructor does nothing (for performance).
|
||
|
b2Mat33() {}
|
||
|
|
||
|
/// Construct this matrix using columns.
|
||
|
b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
|
||
|
{
|
||
|
col1 = c1;
|
||
|
col2 = c2;
|
||
|
col3 = c3;
|
||
|
}
|
||
|
|
||
|
/// Set this matrix to all zeros.
|
||
|
void SetZero()
|
||
|
{
|
||
|
col1.SetZero();
|
||
|
col2.SetZero();
|
||
|
col3.SetZero();
|
||
|
}
|
||
|
|
||
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
||
|
/// than computing the inverse in one-shot cases.
|
||
|
b2Vec3 Solve33(const b2Vec3& b) const;
|
||
|
|
||
|
/// Solve A * x = b, where b is a column vector. This is more efficient
|
||
|
/// than computing the inverse in one-shot cases. Solve only the upper
|
||
|
/// 2-by-2 matrix equation.
|
||
|
b2Vec2 Solve22(const b2Vec2& b) const;
|
||
|
|
||
|
b2Vec3 col1, col2, col3;
|
||
|
};
|
||
|
|
||
|
/// A transform contains translation and rotation. It is used to represent
|
||
|
/// the position and orientation of rigid frames.
|
||
|
struct b2Transform
|
||
|
{
|
||
|
/// The default constructor does nothing (for performance).
|
||
|
b2Transform() {}
|
||
|
|
||
|
/// Initialize using a position vector and a rotation matrix.
|
||
|
b2Transform(const b2Vec2& position, const b2Mat22& R) : position(position), R(R) {}
|
||
|
|
||
|
/// Set this to the identity transform.
|
||
|
void SetIdentity()
|
||
|
{
|
||
|
position.SetZero();
|
||
|
R.SetIdentity();
|
||
|
}
|
||
|
|
||
|
/// Set this based on the position and angle.
|
||
|
void Set(const b2Vec2& p, float32 angle)
|
||
|
{
|
||
|
position = p;
|
||
|
R.Set(angle);
|
||
|
}
|
||
|
|
||
|
/// Calculate the angle that the rotation matrix represents.
|
||
|
float32 GetAngle() const
|
||
|
{
|
||
|
return b2Atan2(R.col1.y, R.col1.x);
|
||
|
}
|
||
|
|
||
|
b2Vec2 position;
|
||
|
b2Mat22 R;
|
||
|
};
|
||
|
|
||
|
/// This describes the motion of a body/shape for TOI computation.
|
||
|
/// Shapes are defined with respect to the body origin, which may
|
||
|
/// no coincide with the center of mass. However, to support dynamics
|
||
|
/// we must interpolate the center of mass position.
|
||
|
struct b2Sweep
|
||
|
{
|
||
|
/// Get the interpolated transform at a specific time.
|
||
|
/// @param alpha is a factor in [0,1], where 0 indicates t0.
|
||
|
void GetTransform(b2Transform* xf, float32 alpha) const;
|
||
|
|
||
|
/// Advance the sweep forward, yielding a new initial state.
|
||
|
/// @param t the new initial time.
|
||
|
void Advance(float32 t);
|
||
|
|
||
|
/// Normalize the angles.
|
||
|
void Normalize();
|
||
|
|
||
|
b2Vec2 localCenter; ///< local center of mass position
|
||
|
b2Vec2 c0, c; ///< center world positions
|
||
|
float32 a0, a; ///< world angles
|
||
|
};
|
||
|
|
||
|
|
||
|
extern const b2Vec2 b2Vec2_zero;
|
||
|
extern const b2Mat22 b2Mat22_identity;
|
||
|
extern const b2Transform b2Transform_identity;
|
||
|
|
||
|
/// Perform the dot product on two vectors.
|
||
|
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
return a.x * b.x + a.y * b.y;
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on two vectors. In 2D this produces a scalar.
|
||
|
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
return a.x * b.y - a.y * b.x;
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on a vector and a scalar. In 2D this produces
|
||
|
/// a vector.
|
||
|
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
|
||
|
{
|
||
|
return b2Vec2(s * a.y, -s * a.x);
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on a scalar and a vector. In 2D this produces
|
||
|
/// a vector.
|
||
|
inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
|
||
|
{
|
||
|
return b2Vec2(-s * a.y, s * a.x);
|
||
|
}
|
||
|
|
||
|
/// Multiply a matrix times a vector. If a rotation matrix is provided,
|
||
|
/// then this transforms the vector from one frame to another.
|
||
|
inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
|
||
|
{
|
||
|
return b2Vec2(A.col1.x * v.x + A.col2.x * v.y, A.col1.y * v.x + A.col2.y * v.y);
|
||
|
}
|
||
|
|
||
|
/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
|
||
|
/// then this transforms the vector from one frame to another (inverse transform).
|
||
|
inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
|
||
|
{
|
||
|
return b2Vec2(b2Dot(v, A.col1), b2Dot(v, A.col2));
|
||
|
}
|
||
|
|
||
|
/// Add two vectors component-wise.
|
||
|
inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
return b2Vec2(a.x + b.x, a.y + b.y);
|
||
|
}
|
||
|
|
||
|
/// Subtract two vectors component-wise.
|
||
|
inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
return b2Vec2(a.x - b.x, a.y - b.y);
|
||
|
}
|
||
|
|
||
|
inline b2Vec2 operator * (float32 s, const b2Vec2& a)
|
||
|
{
|
||
|
return b2Vec2(s * a.x, s * a.y);
|
||
|
}
|
||
|
|
||
|
inline bool operator == (const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
return a.x == b.x && a.y == b.y;
|
||
|
}
|
||
|
|
||
|
inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
b2Vec2 c = a - b;
|
||
|
return c.Length();
|
||
|
}
|
||
|
|
||
|
inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
b2Vec2 c = a - b;
|
||
|
return b2Dot(c, c);
|
||
|
}
|
||
|
|
||
|
inline b2Vec3 operator * (float32 s, const b2Vec3& a)
|
||
|
{
|
||
|
return b2Vec3(s * a.x, s * a.y, s * a.z);
|
||
|
}
|
||
|
|
||
|
/// Add two vectors component-wise.
|
||
|
inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
|
||
|
{
|
||
|
return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
|
||
|
}
|
||
|
|
||
|
/// Subtract two vectors component-wise.
|
||
|
inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
|
||
|
{
|
||
|
return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
|
||
|
}
|
||
|
|
||
|
/// Perform the dot product on two vectors.
|
||
|
inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
|
||
|
{
|
||
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on two vectors.
|
||
|
inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
|
||
|
{
|
||
|
return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
||
|
}
|
||
|
|
||
|
inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
|
||
|
{
|
||
|
return b2Mat22(A.col1 + B.col1, A.col2 + B.col2);
|
||
|
}
|
||
|
|
||
|
// A * B
|
||
|
inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
|
||
|
{
|
||
|
return b2Mat22(b2Mul(A, B.col1), b2Mul(A, B.col2));
|
||
|
}
|
||
|
|
||
|
// A^T * B
|
||
|
inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
|
||
|
{
|
||
|
b2Vec2 c1(b2Dot(A.col1, B.col1), b2Dot(A.col2, B.col1));
|
||
|
b2Vec2 c2(b2Dot(A.col1, B.col2), b2Dot(A.col2, B.col2));
|
||
|
return b2Mat22(c1, c2);
|
||
|
}
|
||
|
|
||
|
/// Multiply a matrix times a vector.
|
||
|
inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
|
||
|
{
|
||
|
return v.x * A.col1 + v.y * A.col2 + v.z * A.col3;
|
||
|
}
|
||
|
|
||
|
inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
|
||
|
{
|
||
|
float32 x = T.position.x + T.R.col1.x * v.x + T.R.col2.x * v.y;
|
||
|
float32 y = T.position.y + T.R.col1.y * v.x + T.R.col2.y * v.y;
|
||
|
|
||
|
return b2Vec2(x, y);
|
||
|
}
|
||
|
|
||
|
inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
|
||
|
{
|
||
|
return b2MulT(T.R, v - T.position);
|
||
|
}
|
||
|
|
||
|
inline b2Vec2 b2Abs(const b2Vec2& a)
|
||
|
{
|
||
|
return b2Vec2(b2Abs(a.x), b2Abs(a.y));
|
||
|
}
|
||
|
|
||
|
inline b2Mat22 b2Abs(const b2Mat22& A)
|
||
|
{
|
||
|
return b2Mat22(b2Abs(A.col1), b2Abs(A.col2));
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T b2Min(T a, T b)
|
||
|
{
|
||
|
return a < b ? a : b;
|
||
|
}
|
||
|
|
||
|
inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T b2Max(T a, T b)
|
||
|
{
|
||
|
return a > b ? a : b;
|
||
|
}
|
||
|
|
||
|
inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
|
||
|
{
|
||
|
return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T b2Clamp(T a, T low, T high)
|
||
|
{
|
||
|
return b2Max(low, b2Min(a, high));
|
||
|
}
|
||
|
|
||
|
inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
|
||
|
{
|
||
|
return b2Max(low, b2Min(a, high));
|
||
|
}
|
||
|
|
||
|
template<typename T> inline void b2Swap(T& a, T& b)
|
||
|
{
|
||
|
T tmp = a;
|
||
|
a = b;
|
||
|
b = tmp;
|
||
|
}
|
||
|
|
||
|
/// "Next Largest Power of 2
|
||
|
/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
|
||
|
/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
|
||
|
/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
|
||
|
/// largest power of 2. For a 32-bit value:"
|
||
|
inline uint32 b2NextPowerOfTwo(uint32 x)
|
||
|
{
|
||
|
x |= (x >> 1);
|
||
|
x |= (x >> 2);
|
||
|
x |= (x >> 4);
|
||
|
x |= (x >> 8);
|
||
|
x |= (x >> 16);
|
||
|
return x + 1;
|
||
|
}
|
||
|
|
||
|
inline bool b2IsPowerOfTwo(uint32 x)
|
||
|
{
|
||
|
bool result = x > 0 && (x & (x - 1)) == 0;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
inline void b2Sweep::GetTransform(b2Transform* xf, float32 alpha) const
|
||
|
{
|
||
|
xf->position = (1.0f - alpha) * c0 + alpha * c;
|
||
|
float32 angle = (1.0f - alpha) * a0 + alpha * a;
|
||
|
xf->R.Set(angle);
|
||
|
|
||
|
// Shift to origin
|
||
|
xf->position -= b2Mul(xf->R, localCenter);
|
||
|
}
|
||
|
|
||
|
inline void b2Sweep::Advance(float32 t)
|
||
|
{
|
||
|
c0 = (1.0f - t) * c0 + t * c;
|
||
|
a0 = (1.0f - t) * a0 + t * a;
|
||
|
}
|
||
|
|
||
|
/// Normalize an angle in radians to be between -pi and pi
|
||
|
inline void b2Sweep::Normalize()
|
||
|
{
|
||
|
float32 twoPi = 2.0f * b2_pi;
|
||
|
float32 d = twoPi * floorf(a0 / twoPi);
|
||
|
a0 -= d;
|
||
|
a -= d;
|
||
|
}
|
||
|
|
||
|
#endif
|