axmol/thirdparty/openal/alc/effects/equalizer.cpp

205 lines
8.6 KiB
C++
Raw Normal View History

/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <utility>
#include "alc/effects/base.h"
#include "almalloc.h"
#include "alspan.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
namespace {
/* The document "Effects Extension Guide.pdf" says that low and high *
* frequencies are cutoff frequencies. This is not fully correct, they *
* are corner frequencies for low and high shelf filters. If they were *
* just cutoff frequencies, there would be no need in cutoff frequency *
* gains, which are present. Documentation for "Creative Proteus X2" *
* software describes 4-band equalizer functionality in a much better *
* way. This equalizer seems to be a predecessor of OpenAL 4-band *
* equalizer. With low and high shelf filters we are able to cutoff *
* frequencies below and/or above corner frequencies using attenuation *
* gains (below 1.0) and amplify all low and/or high frequencies using *
* gains above 1.0. *
* *
* Low-shelf Low Mid Band High Mid Band High-shelf *
* corner center center corner *
* frequency frequency frequency frequency *
* 50Hz..800Hz 200Hz..3000Hz 1000Hz..8000Hz 4000Hz..16000Hz *
* *
* | | | | *
* | | | | *
* B -----+ /--+--\ /--+--\ +----- *
* O |\ | | | | | | /| *
* O | \ - | - - | - / | *
* S + | \ | | | | | | / | *
* T | | | | | | | | | | *
* ---------+---------------+------------------+---------------+-------- *
* C | | | | | | | | | | *
* U - | / | | | | | | \ | *
* T | / - | - - | - \ | *
* O |/ | | | | | | \| *
* F -----+ \--+--/ \--+--/ +----- *
* F | | | | *
* | | | | *
* *
* Gains vary from 0.126 up to 7.943, which means from -18dB attenuation *
* up to +18dB amplification. Band width varies from 0.01 up to 1.0 in *
* octaves for two mid bands. *
* *
* Implementation is based on the "Cookbook formulae for audio EQ biquad *
* filter coefficients" by Robert Bristow-Johnson *
* http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */
struct EqualizerState final : public EffectState {
struct {
uint mTargetChannel{InvalidChannelIndex};
/* Effect parameters */
BiquadFilter mFilter[4];
/* Effect gains for each channel */
float mCurrentGain{};
float mTargetGain{};
} mChans[MaxAmbiChannels];
alignas(16) FloatBufferLine mSampleBuffer{};
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) override;
DEF_NEWDEL(EqualizerState)
};
void EqualizerState::deviceUpdate(const DeviceBase*, const BufferStorage*)
{
for(auto &e : mChans)
{
e.mTargetChannel = InvalidChannelIndex;
std::for_each(std::begin(e.mFilter), std::end(e.mFilter),
std::mem_fn(&BiquadFilter::clear));
e.mCurrentGain = 0.0f;
}
}
void EqualizerState::update(const ContextBase *context, const EffectSlot *slot,
const EffectProps *props, const EffectTarget target)
{
const DeviceBase *device{context->mDevice};
auto frequency = static_cast<float>(device->Frequency);
float gain, f0norm;
/* Calculate coefficients for the each type of filter. Note that the shelf
* and peaking filters' gain is for the centerpoint of the transition band,
* while the effect property gains are for the shelf/peak itself. So the
* property gains need their dB halved (sqrt of linear gain) for the
* shelf/peak to reach the provided gain.
*/
gain = std::sqrt(props->Equalizer.LowGain);
f0norm = props->Equalizer.LowCutoff / frequency;
mChans[0].mFilter[0].setParamsFromSlope(BiquadType::LowShelf, f0norm, gain, 0.75f);
gain = std::sqrt(props->Equalizer.Mid1Gain);
f0norm = props->Equalizer.Mid1Center / frequency;
mChans[0].mFilter[1].setParamsFromBandwidth(BiquadType::Peaking, f0norm, gain,
props->Equalizer.Mid1Width);
gain = std::sqrt(props->Equalizer.Mid2Gain);
f0norm = props->Equalizer.Mid2Center / frequency;
mChans[0].mFilter[2].setParamsFromBandwidth(BiquadType::Peaking, f0norm, gain,
props->Equalizer.Mid2Width);
gain = std::sqrt(props->Equalizer.HighGain);
f0norm = props->Equalizer.HighCutoff / frequency;
mChans[0].mFilter[3].setParamsFromSlope(BiquadType::HighShelf, f0norm, gain, 0.75f);
/* Copy the filter coefficients for the other input channels. */
for(size_t i{1u};i < slot->Wet.Buffer.size();++i)
{
mChans[i].mFilter[0].copyParamsFrom(mChans[0].mFilter[0]);
mChans[i].mFilter[1].copyParamsFrom(mChans[0].mFilter[1]);
mChans[i].mFilter[2].copyParamsFrom(mChans[0].mFilter[2]);
mChans[i].mFilter[3].copyParamsFrom(mChans[0].mFilter[3]);
}
mOutTarget = target.Main->Buffer;
auto set_channel = [this](size_t idx, uint outchan, float outgain)
{
mChans[idx].mTargetChannel = outchan;
mChans[idx].mTargetGain = outgain;
};
target.Main->setAmbiMixParams(slot->Wet, slot->Gain, set_channel);
}
void EqualizerState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
const al::span<float> buffer{mSampleBuffer.data(), samplesToDo};
auto chan = std::begin(mChans);
for(const auto &input : samplesIn)
{
const size_t outidx{chan->mTargetChannel};
if(outidx != InvalidChannelIndex)
{
const al::span<const float> inbuf{input.data(), samplesToDo};
DualBiquad{chan->mFilter[0], chan->mFilter[1]}.process(inbuf, buffer.begin());
DualBiquad{chan->mFilter[2], chan->mFilter[3]}.process(buffer, buffer.begin());
MixSamples(buffer, samplesOut[outidx].data(), chan->mCurrentGain, chan->mTargetGain,
samplesToDo);
}
++chan;
}
}
struct EqualizerStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new EqualizerState{}}; }
};
} // namespace
EffectStateFactory *EqualizerStateFactory_getFactory()
{
static EqualizerStateFactory EqualizerFactory{};
return &EqualizerFactory;
}