axmol/Box2D/Dynamics/Contacts/b2TOISolver.cpp

232 lines
6.3 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2006-2010 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Dynamics/Contacts/b2TOISolver.h>
#include <Box2D/Dynamics/Contacts/b2Contact.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2Fixture.h>
#include <Box2D/Common/b2StackAllocator.h>
struct b2TOIConstraint
{
b2Vec2 localPoints[b2_maxManifoldPoints];
b2Vec2 localNormal;
b2Vec2 localPoint;
b2Manifold::Type type;
float32 radius;
int32 pointCount;
b2Body* bodyA;
b2Body* bodyB;
};
b2TOISolver::b2TOISolver(b2StackAllocator* allocator)
{
m_allocator = allocator;
m_constraints = NULL;
m_count = NULL;
m_toiBody = NULL;
}
b2TOISolver::~b2TOISolver()
{
Clear();
}
void b2TOISolver::Clear()
{
if (m_allocator && m_constraints)
{
m_allocator->Free(m_constraints);
m_constraints = NULL;
}
}
void b2TOISolver::Initialize(b2Contact** contacts, int32 count, b2Body* toiBody)
{
Clear();
m_count = count;
m_toiBody = toiBody;
m_constraints = (b2TOIConstraint*) m_allocator->Allocate(m_count * sizeof(b2TOIConstraint));
for (int32 i = 0; i < m_count; ++i)
{
b2Contact* contact = contacts[i];
b2Fixture* fixtureA = contact->GetFixtureA();
b2Fixture* fixtureB = contact->GetFixtureB();
b2Shape* shapeA = fixtureA->GetShape();
b2Shape* shapeB = fixtureB->GetShape();
float32 radiusA = shapeA->m_radius;
float32 radiusB = shapeB->m_radius;
b2Body* bodyA = fixtureA->GetBody();
b2Body* bodyB = fixtureB->GetBody();
b2Manifold* manifold = contact->GetManifold();
b2Assert(manifold->pointCount > 0);
b2TOIConstraint* constraint = m_constraints + i;
constraint->bodyA = bodyA;
constraint->bodyB = bodyB;
constraint->localNormal = manifold->localNormal;
constraint->localPoint = manifold->localPoint;
constraint->type = manifold->type;
constraint->pointCount = manifold->pointCount;
constraint->radius = radiusA + radiusB;
for (int32 j = 0; j < constraint->pointCount; ++j)
{
b2ManifoldPoint* cp = manifold->points + j;
constraint->localPoints[j] = cp->localPoint;
}
}
}
struct b2TOISolverManifold
{
void Initialize(b2TOIConstraint* cc, int32 index)
{
b2Assert(cc->pointCount > 0);
switch (cc->type)
{
case b2Manifold::e_circles:
{
b2Vec2 pointA = cc->bodyA->GetWorldPoint(cc->localPoint);
b2Vec2 pointB = cc->bodyB->GetWorldPoint(cc->localPoints[0]);
if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
{
normal = pointB - pointA;
normal.Normalize();
}
else
{
normal.Set(1.0f, 0.0f);
}
point = 0.5f * (pointA + pointB);
separation = b2Dot(pointB - pointA, normal) - cc->radius;
}
break;
case b2Manifold::e_faceA:
{
normal = cc->bodyA->GetWorldVector(cc->localNormal);
b2Vec2 planePoint = cc->bodyA->GetWorldPoint(cc->localPoint);
b2Vec2 clipPoint = cc->bodyB->GetWorldPoint(cc->localPoints[index]);
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
point = clipPoint;
}
break;
case b2Manifold::e_faceB:
{
normal = cc->bodyB->GetWorldVector(cc->localNormal);
b2Vec2 planePoint = cc->bodyB->GetWorldPoint(cc->localPoint);
b2Vec2 clipPoint = cc->bodyA->GetWorldPoint(cc->localPoints[index]);
separation = b2Dot(clipPoint - planePoint, normal) - cc->radius;
point = clipPoint;
// Ensure normal points from A to B
normal = -normal;
}
break;
}
}
b2Vec2 normal;
b2Vec2 point;
float32 separation;
};
// Push out the toi body to provide clearance for further simulation.
bool b2TOISolver::Solve(float32 baumgarte)
{
float32 minSeparation = 0.0f;
for (int32 i = 0; i < m_count; ++i)
{
b2TOIConstraint* c = m_constraints + i;
b2Body* bodyA = c->bodyA;
b2Body* bodyB = c->bodyB;
float32 massA = bodyA->m_mass;
float32 massB = bodyB->m_mass;
// Only the TOI body should move.
if (bodyA == m_toiBody)
{
massB = 0.0f;
}
else
{
massA = 0.0f;
}
float32 invMassA = massA * bodyA->m_invMass;
float32 invIA = massA * bodyA->m_invI;
float32 invMassB = massB * bodyB->m_invMass;
float32 invIB = massB * bodyB->m_invI;
// Solve normal constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2TOISolverManifold psm;
psm.Initialize(c, j);
b2Vec2 normal = psm.normal;
b2Vec2 point = psm.point;
float32 separation = psm.separation;
b2Vec2 rA = point - bodyA->m_sweep.c;
b2Vec2 rB = point - bodyB->m_sweep.c;
// Track max constraint error.
minSeparation = b2Min(minSeparation, separation);
// Prevent large corrections and allow slop.
float32 C = b2Clamp(baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f);
// Compute the effective mass.
float32 rnA = b2Cross(rA, normal);
float32 rnB = b2Cross(rB, normal);
float32 K = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;
// Compute normal impulse
float32 impulse = K > 0.0f ? - C / K : 0.0f;
b2Vec2 P = impulse * normal;
bodyA->m_sweep.c -= invMassA * P;
bodyA->m_sweep.a -= invIA * b2Cross(rA, P);
bodyA->SynchronizeTransform();
bodyB->m_sweep.c += invMassB * P;
bodyB->m_sweep.a += invIB * b2Cross(rB, P);
bodyB->SynchronizeTransform();
}
}
// We can't expect minSpeparation >= -b2_linearSlop because we don't
// push the separation above -b2_linearSlop.
return minSeparation >= -1.5f * b2_linearSlop;
}