2014-04-02 10:33:07 +08:00
|
|
|
#ifndef VECTOR3_H_
|
|
|
|
#define VECTOR3_H_
|
|
|
|
|
2014-04-02 12:09:51 +08:00
|
|
|
#include "CCMathBase.h"
|
|
|
|
|
|
|
|
NS_CC_MATH_BEGIN
|
2014-04-02 10:33:07 +08:00
|
|
|
|
|
|
|
class Matrix;
|
|
|
|
class Quaternion;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Defines a 3-element floating point vector.
|
|
|
|
*
|
|
|
|
* When using a vector to represent a surface normal,
|
|
|
|
* the vector should typically be normalized.
|
|
|
|
* Other uses of directional vectors may wish to leave
|
|
|
|
* the magnitude of the vector intact. When used as a point,
|
|
|
|
* the elements of the vector represent a position in 3D space.
|
|
|
|
*/
|
|
|
|
class Vector3
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The x-coordinate.
|
|
|
|
*/
|
|
|
|
float x;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The y-coordinate.
|
|
|
|
*/
|
|
|
|
float y;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The z-coordinate.
|
|
|
|
*/
|
|
|
|
float z;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs a new vector initialized to all zeros.
|
|
|
|
*/
|
|
|
|
Vector3();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs a new vector initialized to the specified values.
|
|
|
|
*
|
|
|
|
* @param x The x coordinate.
|
|
|
|
* @param y The y coordinate.
|
|
|
|
* @param z The z coordinate.
|
|
|
|
*/
|
|
|
|
Vector3(float x, float y, float z);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs a new vector from the values in the specified array.
|
|
|
|
*
|
|
|
|
* @param array An array containing the elements of the vector in the order x, y, z.
|
|
|
|
*/
|
|
|
|
Vector3(const float* array);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs a vector that describes the direction between the specified points.
|
|
|
|
*
|
|
|
|
* @param p1 The first point.
|
|
|
|
* @param p2 The second point.
|
|
|
|
*/
|
|
|
|
Vector3(const Vector3& p1, const Vector3& p2);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs a new vector that is a copy of the specified vector.
|
|
|
|
*
|
|
|
|
* @param copy The vector to copy.
|
|
|
|
*/
|
|
|
|
Vector3(const Vector3& copy);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Creates a new vector from an integer interpreted as an RGB value.
|
|
|
|
* E.g. 0xff0000 represents red or the vector (1, 0, 0).
|
|
|
|
*
|
|
|
|
* @param color The integer to interpret as an RGB value.
|
|
|
|
*
|
|
|
|
* @return A vector corresponding to the interpreted RGB color.
|
|
|
|
*/
|
|
|
|
static Vector3 fromColor(unsigned int color);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Destructor.
|
|
|
|
*/
|
|
|
|
~Vector3();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the zero vector.
|
|
|
|
*
|
|
|
|
* @return The 3-element vector of 0s.
|
|
|
|
*/
|
|
|
|
static const Vector3& zero();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the one vector.
|
|
|
|
*
|
|
|
|
* @return The 3-element vector of 1s.
|
|
|
|
*/
|
|
|
|
static const Vector3& one();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the unit x vector.
|
|
|
|
*
|
|
|
|
* @return The 3-element unit vector along the x axis.
|
|
|
|
*/
|
|
|
|
static const Vector3& unitX();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the unit y vector.
|
|
|
|
*
|
|
|
|
* @return The 3-element unit vector along the y axis.
|
|
|
|
*/
|
|
|
|
static const Vector3& unitY();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the unit z vector.
|
|
|
|
*
|
|
|
|
* @return The 3-element unit vector along the z axis.
|
|
|
|
*/
|
|
|
|
static const Vector3& unitZ();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Indicates whether this vector contains all zeros.
|
|
|
|
*
|
|
|
|
* @return true if this vector contains all zeros, false otherwise.
|
|
|
|
*/
|
|
|
|
bool isZero() const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Indicates whether this vector contains all ones.
|
|
|
|
*
|
|
|
|
* @return true if this vector contains all ones, false otherwise.
|
|
|
|
*/
|
|
|
|
bool isOne() const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the angle (in radians) between the specified vectors.
|
|
|
|
*
|
|
|
|
* @param v1 The first vector.
|
|
|
|
* @param v2 The second vector.
|
|
|
|
*
|
|
|
|
* @return The angle between the two vectors (in radians).
|
|
|
|
*/
|
|
|
|
static float angle(const Vector3& v1, const Vector3& v2);
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds the elements of the specified vector to this one.
|
|
|
|
*
|
|
|
|
* @param v The vector to add.
|
|
|
|
*/
|
|
|
|
void add(const Vector3& v);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds the specified vectors and stores the result in dst.
|
|
|
|
*
|
|
|
|
* @param v1 The first vector.
|
|
|
|
* @param v2 The second vector.
|
|
|
|
* @param dst A vector to store the result in.
|
|
|
|
*/
|
|
|
|
static void add(const Vector3& v1, const Vector3& v2, Vector3* dst);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Clamps this vector within the specified range.
|
|
|
|
*
|
|
|
|
* @param min The minimum value.
|
|
|
|
* @param max The maximum value.
|
|
|
|
*/
|
|
|
|
void clamp(const Vector3& min, const Vector3& max);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Clamps the specified vector within the specified range and returns it in dst.
|
|
|
|
*
|
|
|
|
* @param v The vector to clamp.
|
|
|
|
* @param min The minimum value.
|
|
|
|
* @param max The maximum value.
|
|
|
|
* @param dst A vector to store the result in.
|
|
|
|
*/
|
|
|
|
static void clamp(const Vector3& v, const Vector3& min, const Vector3& max, Vector3* dst);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets this vector to the cross product between itself and the specified vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to compute the cross product with.
|
|
|
|
*/
|
|
|
|
void cross(const Vector3& v);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Computes the cross product of the specified vectors and stores the result in dst.
|
|
|
|
*
|
|
|
|
* @param v1 The first vector.
|
|
|
|
* @param v2 The second vector.
|
|
|
|
* @param dst A vector to store the result in.
|
|
|
|
*/
|
|
|
|
static void cross(const Vector3& v1, const Vector3& v2, Vector3* dst);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the distance between this vector and v.
|
|
|
|
*
|
|
|
|
* @param v The other vector.
|
|
|
|
*
|
|
|
|
* @return The distance between this vector and v.
|
|
|
|
*
|
|
|
|
* @see distanceSquared
|
|
|
|
*/
|
|
|
|
float distance(const Vector3& v) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the squared distance between this vector and v.
|
|
|
|
*
|
|
|
|
* When it is not necessary to get the exact distance between
|
|
|
|
* two vectors (for example, when simply comparing the
|
|
|
|
* distance between different vectors), it is advised to use
|
|
|
|
* this method instead of distance.
|
|
|
|
*
|
|
|
|
* @param v The other vector.
|
|
|
|
*
|
|
|
|
* @return The squared distance between this vector and v.
|
|
|
|
*
|
|
|
|
* @see distance
|
|
|
|
*/
|
|
|
|
float distanceSquared(const Vector3& v) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the dot product of this vector and the specified vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to compute the dot product with.
|
|
|
|
*
|
|
|
|
* @return The dot product.
|
|
|
|
*/
|
|
|
|
float dot(const Vector3& v) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the dot product between the specified vectors.
|
|
|
|
*
|
|
|
|
* @param v1 The first vector.
|
|
|
|
* @param v2 The second vector.
|
|
|
|
*
|
|
|
|
* @return The dot product between the vectors.
|
|
|
|
*/
|
|
|
|
static float dot(const Vector3& v1, const Vector3& v2);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Computes the length of this vector.
|
|
|
|
*
|
|
|
|
* @return The length of the vector.
|
|
|
|
*
|
|
|
|
* @see lengthSquared
|
|
|
|
*/
|
|
|
|
float length() const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the squared length of this vector.
|
|
|
|
*
|
|
|
|
* When it is not necessary to get the exact length of a
|
|
|
|
* vector (for example, when simply comparing the lengths of
|
|
|
|
* different vectors), it is advised to use this method
|
|
|
|
* instead of length.
|
|
|
|
*
|
|
|
|
* @return The squared length of the vector.
|
|
|
|
*
|
|
|
|
* @see length
|
|
|
|
*/
|
|
|
|
float lengthSquared() const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Negates this vector.
|
|
|
|
*/
|
|
|
|
void negate();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Normalizes this vector.
|
|
|
|
*
|
|
|
|
* This method normalizes this Vector3 so that it is of
|
|
|
|
* unit length (in other words, the length of the vector
|
|
|
|
* after calling this method will be 1.0f). If the vector
|
|
|
|
* already has unit length or if the length of the vector
|
|
|
|
* is zero, this method does nothing.
|
|
|
|
*
|
|
|
|
* @return This vector, after the normalization occurs.
|
|
|
|
*/
|
|
|
|
Vector3& normalize();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Normalizes this vector and stores the result in dst.
|
|
|
|
*
|
|
|
|
* If the vector already has unit length or if the length
|
|
|
|
* of the vector is zero, this method simply copies the
|
|
|
|
* current vector into dst.
|
|
|
|
*
|
|
|
|
* @param dst The destination vector.
|
|
|
|
*/
|
|
|
|
void normalize(Vector3* dst) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Scales all elements of this vector by the specified value.
|
|
|
|
*
|
|
|
|
* @param scalar The scalar value.
|
|
|
|
*/
|
|
|
|
void scale(float scalar);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets the elements of this vector to the specified values.
|
|
|
|
*
|
|
|
|
* @param x The new x coordinate.
|
|
|
|
* @param y The new y coordinate.
|
|
|
|
* @param z The new z coordinate.
|
|
|
|
*/
|
|
|
|
void set(float x, float y, float z);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets the elements of this vector from the values in the specified array.
|
|
|
|
*
|
|
|
|
* @param array An array containing the elements of the vector in the order x, y, z.
|
|
|
|
*/
|
|
|
|
void set(const float* array);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets the elements of this vector to those in the specified vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to copy.
|
|
|
|
*/
|
|
|
|
void set(const Vector3& v);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets this vector to the directional vector between the specified points.
|
|
|
|
*/
|
|
|
|
void set(const Vector3& p1, const Vector3& p2);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Subtracts this vector and the specified vector as (this - v)
|
|
|
|
* and stores the result in this vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to subtract.
|
|
|
|
*/
|
|
|
|
void subtract(const Vector3& v);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Subtracts the specified vectors and stores the result in dst.
|
|
|
|
* The resulting vector is computed as (v1 - v2).
|
|
|
|
*
|
|
|
|
* @param v1 The first vector.
|
|
|
|
* @param v2 The second vector.
|
|
|
|
* @param dst The destination vector.
|
|
|
|
*/
|
|
|
|
static void subtract(const Vector3& v1, const Vector3& v2, Vector3* dst);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Updates this vector towards the given target using a smoothing function.
|
|
|
|
* The given response time determines the amount of smoothing (lag). A longer
|
|
|
|
* response time yields a smoother result and more lag. To force this vector to
|
|
|
|
* follow the target closely, provide a response time that is very small relative
|
|
|
|
* to the given elapsed time.
|
|
|
|
*
|
|
|
|
* @param target target value.
|
|
|
|
* @param elapsedTime elapsed time between calls.
|
|
|
|
* @param responseTime response time (in the same units as elapsedTime).
|
|
|
|
*/
|
|
|
|
void smooth(const Vector3& target, float elapsedTime, float responseTime);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the sum of this vector with the given vector.
|
|
|
|
*
|
|
|
|
* Note: this does not modify this vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to add.
|
|
|
|
* @return The vector sum.
|
|
|
|
*/
|
|
|
|
inline const Vector3 operator+(const Vector3& v) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds the given vector to this vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to add.
|
|
|
|
* @return This vector, after the addition occurs.
|
|
|
|
*/
|
|
|
|
inline Vector3& operator+=(const Vector3& v);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the difference of this vector with the given vector.
|
|
|
|
*
|
|
|
|
* Note: this does not modify this vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to subtract.
|
|
|
|
* @return The vector difference.
|
|
|
|
*/
|
|
|
|
inline const Vector3 operator-(const Vector3& v) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Subtracts the given vector from this vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to subtract.
|
|
|
|
* @return This vector, after the subtraction occurs.
|
|
|
|
*/
|
|
|
|
inline Vector3& operator-=(const Vector3& v);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the negation of this vector.
|
|
|
|
*
|
|
|
|
* Note: this does not modify this vector.
|
|
|
|
*
|
|
|
|
* @return The negation of this vector.
|
|
|
|
*/
|
|
|
|
inline const Vector3 operator-() const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the scalar product of this vector with the given value.
|
|
|
|
*
|
|
|
|
* Note: this does not modify this vector.
|
|
|
|
*
|
|
|
|
* @param x The value to scale by.
|
|
|
|
* @return The scaled vector.
|
|
|
|
*/
|
|
|
|
inline const Vector3 operator*(float x) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Scales this vector by the given value.
|
|
|
|
*
|
|
|
|
* @param x The value to scale by.
|
|
|
|
* @return This vector, after the scale occurs.
|
|
|
|
*/
|
|
|
|
inline Vector3& operator*=(float x);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the components of this vector divided by the given constant
|
|
|
|
*
|
|
|
|
* Note: this does not modify this vector.
|
|
|
|
*
|
|
|
|
* @param x the constant to divide this vector with
|
|
|
|
* @return a smaller vector
|
|
|
|
*/
|
|
|
|
inline const Vector3 operator/(float x) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determines if this vector is less than the given vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to compare against.
|
|
|
|
*
|
|
|
|
* @return True if this vector is less than the given vector, false otherwise.
|
|
|
|
*/
|
|
|
|
inline bool operator<(const Vector3& v) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determines if this vector is equal to the given vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to compare against.
|
|
|
|
*
|
|
|
|
* @return True if this vector is equal to the given vector, false otherwise.
|
|
|
|
*/
|
|
|
|
inline bool operator==(const Vector3& v) const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determines if this vector is not equal to the given vector.
|
|
|
|
*
|
|
|
|
* @param v The vector to compare against.
|
|
|
|
*
|
|
|
|
* @return True if this vector is not equal to the given vector, false otherwise.
|
|
|
|
*/
|
|
|
|
inline bool operator!=(const Vector3& v) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates the scalar product of the given vector with the given value.
|
|
|
|
*
|
|
|
|
* @param x The value to scale by.
|
|
|
|
* @param v The vector to scale.
|
|
|
|
* @return The scaled vector.
|
|
|
|
*/
|
|
|
|
inline const Vector3 operator*(float x, const Vector3& v);
|
|
|
|
|
2014-04-02 12:09:51 +08:00
|
|
|
NS_CC_MATH_END
|
2014-04-02 10:33:07 +08:00
|
|
|
|
|
|
|
#include "Vector3.inl"
|
|
|
|
|
|
|
|
#endif
|