mirror of https://github.com/axmolengine/axmol.git
220 lines
6.4 KiB
C++
220 lines
6.4 KiB
C++
|
/*
|
||
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
||
|
*
|
||
|
* This software is provided 'as-is', without any express or implied
|
||
|
* warranty. In no event will the authors be held liable for any damages
|
||
|
* arising from the use of this software.
|
||
|
* Permission is granted to anyone to use this software for any purpose,
|
||
|
* including commercial applications, and to alter it and redistribute it
|
||
|
* freely, subject to the following restrictions:
|
||
|
* 1. The origin of this software must not be misrepresented; you must not
|
||
|
* claim that you wrote the original software. If you use this software
|
||
|
* in a product, an acknowledgment in the product documentation would be
|
||
|
* appreciated but is not required.
|
||
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
||
|
* misrepresented as being the original software.
|
||
|
* 3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
#include <Box2D/Dynamics/Joints/b2WeldJoint.h>
|
||
|
#include <Box2D/Dynamics/b2Body.h>
|
||
|
#include <Box2D/Dynamics/b2TimeStep.h>
|
||
|
|
||
|
// Point-to-point constraint
|
||
|
// C = p2 - p1
|
||
|
// Cdot = v2 - v1
|
||
|
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
|
||
|
// J = [-I -r1_skew I r2_skew ]
|
||
|
// Identity used:
|
||
|
// w k % (rx i + ry j) = w * (-ry i + rx j)
|
||
|
|
||
|
// Angle constraint
|
||
|
// C = angle2 - angle1 - referenceAngle
|
||
|
// Cdot = w2 - w1
|
||
|
// J = [0 0 -1 0 0 1]
|
||
|
// K = invI1 + invI2
|
||
|
|
||
|
void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
|
||
|
{
|
||
|
bodyA = bA;
|
||
|
bodyB = bB;
|
||
|
localAnchorA = bodyA->GetLocalPoint(anchor);
|
||
|
localAnchorB = bodyB->GetLocalPoint(anchor);
|
||
|
referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
|
||
|
}
|
||
|
|
||
|
b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def)
|
||
|
: b2Joint(def)
|
||
|
{
|
||
|
m_localAnchorA = def->localAnchorA;
|
||
|
m_localAnchorB = def->localAnchorB;
|
||
|
m_referenceAngle = def->referenceAngle;
|
||
|
|
||
|
m_impulse.SetZero();
|
||
|
}
|
||
|
|
||
|
void b2WeldJoint::InitVelocityConstraints(const b2TimeStep& step)
|
||
|
{
|
||
|
b2Body* bA = m_bodyA;
|
||
|
b2Body* bB = m_bodyB;
|
||
|
|
||
|
// Compute the effective mass matrix.
|
||
|
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||
|
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||
|
|
||
|
// J = [-I -r1_skew I r2_skew]
|
||
|
// [ 0 -1 0 1]
|
||
|
// r_skew = [-ry; rx]
|
||
|
|
||
|
// Matlab
|
||
|
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
|
||
|
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
|
||
|
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
|
||
|
|
||
|
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||
|
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||
|
|
||
|
m_mass.col1.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
|
||
|
m_mass.col2.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
|
||
|
m_mass.col3.x = -rA.y * iA - rB.y * iB;
|
||
|
m_mass.col1.y = m_mass.col2.x;
|
||
|
m_mass.col2.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
|
||
|
m_mass.col3.y = rA.x * iA + rB.x * iB;
|
||
|
m_mass.col1.z = m_mass.col3.x;
|
||
|
m_mass.col2.z = m_mass.col3.y;
|
||
|
m_mass.col3.z = iA + iB;
|
||
|
|
||
|
if (step.warmStarting)
|
||
|
{
|
||
|
// Scale impulses to support a variable time step.
|
||
|
m_impulse *= step.dtRatio;
|
||
|
|
||
|
b2Vec2 P(m_impulse.x, m_impulse.y);
|
||
|
|
||
|
bA->m_linearVelocity -= mA * P;
|
||
|
bA->m_angularVelocity -= iA * (b2Cross(rA, P) + m_impulse.z);
|
||
|
|
||
|
bB->m_linearVelocity += mB * P;
|
||
|
bB->m_angularVelocity += iB * (b2Cross(rB, P) + m_impulse.z);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_impulse.SetZero();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void b2WeldJoint::SolveVelocityConstraints(const b2TimeStep& step)
|
||
|
{
|
||
|
B2_NOT_USED(step);
|
||
|
|
||
|
b2Body* bA = m_bodyA;
|
||
|
b2Body* bB = m_bodyB;
|
||
|
|
||
|
b2Vec2 vA = bA->m_linearVelocity;
|
||
|
float32 wA = bA->m_angularVelocity;
|
||
|
b2Vec2 vB = bB->m_linearVelocity;
|
||
|
float32 wB = bB->m_angularVelocity;
|
||
|
|
||
|
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||
|
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||
|
|
||
|
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||
|
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||
|
|
||
|
// Solve point-to-point constraint
|
||
|
b2Vec2 Cdot1 = vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA);
|
||
|
float32 Cdot2 = wB - wA;
|
||
|
b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
|
||
|
|
||
|
b2Vec3 impulse = m_mass.Solve33(-Cdot);
|
||
|
m_impulse += impulse;
|
||
|
|
||
|
b2Vec2 P(impulse.x, impulse.y);
|
||
|
|
||
|
vA -= mA * P;
|
||
|
wA -= iA * (b2Cross(rA, P) + impulse.z);
|
||
|
|
||
|
vB += mB * P;
|
||
|
wB += iB * (b2Cross(rB, P) + impulse.z);
|
||
|
|
||
|
bA->m_linearVelocity = vA;
|
||
|
bA->m_angularVelocity = wA;
|
||
|
bB->m_linearVelocity = vB;
|
||
|
bB->m_angularVelocity = wB;
|
||
|
}
|
||
|
|
||
|
bool b2WeldJoint::SolvePositionConstraints(float32 baumgarte)
|
||
|
{
|
||
|
B2_NOT_USED(baumgarte);
|
||
|
|
||
|
b2Body* bA = m_bodyA;
|
||
|
b2Body* bB = m_bodyB;
|
||
|
|
||
|
float32 mA = bA->m_invMass, mB = bB->m_invMass;
|
||
|
float32 iA = bA->m_invI, iB = bB->m_invI;
|
||
|
|
||
|
b2Vec2 rA = b2Mul(bA->GetTransform().R, m_localAnchorA - bA->GetLocalCenter());
|
||
|
b2Vec2 rB = b2Mul(bB->GetTransform().R, m_localAnchorB - bB->GetLocalCenter());
|
||
|
|
||
|
b2Vec2 C1 = bB->m_sweep.c + rB - bA->m_sweep.c - rA;
|
||
|
float32 C2 = bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle;
|
||
|
|
||
|
// Handle large detachment.
|
||
|
const float32 k_allowedStretch = 10.0f * b2_linearSlop;
|
||
|
float32 positionError = C1.Length();
|
||
|
float32 angularError = b2Abs(C2);
|
||
|
if (positionError > k_allowedStretch)
|
||
|
{
|
||
|
iA *= 1.0f;
|
||
|
iB *= 1.0f;
|
||
|
}
|
||
|
|
||
|
m_mass.col1.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
|
||
|
m_mass.col2.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
|
||
|
m_mass.col3.x = -rA.y * iA - rB.y * iB;
|
||
|
m_mass.col1.y = m_mass.col2.x;
|
||
|
m_mass.col2.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
|
||
|
m_mass.col3.y = rA.x * iA + rB.x * iB;
|
||
|
m_mass.col1.z = m_mass.col3.x;
|
||
|
m_mass.col2.z = m_mass.col3.y;
|
||
|
m_mass.col3.z = iA + iB;
|
||
|
|
||
|
b2Vec3 C(C1.x, C1.y, C2);
|
||
|
|
||
|
b2Vec3 impulse = m_mass.Solve33(-C);
|
||
|
|
||
|
b2Vec2 P(impulse.x, impulse.y);
|
||
|
|
||
|
bA->m_sweep.c -= mA * P;
|
||
|
bA->m_sweep.a -= iA * (b2Cross(rA, P) + impulse.z);
|
||
|
|
||
|
bB->m_sweep.c += mB * P;
|
||
|
bB->m_sweep.a += iB * (b2Cross(rB, P) + impulse.z);
|
||
|
|
||
|
bA->SynchronizeTransform();
|
||
|
bB->SynchronizeTransform();
|
||
|
|
||
|
return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
|
||
|
}
|
||
|
|
||
|
b2Vec2 b2WeldJoint::GetAnchorA() const
|
||
|
{
|
||
|
return m_bodyA->GetWorldPoint(m_localAnchorA);
|
||
|
}
|
||
|
|
||
|
b2Vec2 b2WeldJoint::GetAnchorB() const
|
||
|
{
|
||
|
return m_bodyB->GetWorldPoint(m_localAnchorB);
|
||
|
}
|
||
|
|
||
|
b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const
|
||
|
{
|
||
|
b2Vec2 P(m_impulse.x, m_impulse.y);
|
||
|
return inv_dt * P;
|
||
|
}
|
||
|
|
||
|
float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const
|
||
|
{
|
||
|
return inv_dt * m_impulse.z;
|
||
|
}
|