axmol/external/astc/astc_symbolic_physical.cpp

413 lines
12 KiB
C++
Raw Normal View History

2020-11-16 14:47:43 +08:00
// ----------------------------------------------------------------------------
// This confidential and proprietary software may be used only as authorised
// by a licensing agreement from Arm Limited.
// (C) COPYRIGHT 2011-2019 Arm Limited, ALL RIGHTS RESERVED
// The entire notice above must be reproduced on all authorised copies and
// copies may only be made to the extent permitted by a licensing agreement
// from Arm Limited.
// ----------------------------------------------------------------------------
/**
* @brief Functions for converting between symbolic and physical encodings.
*/
#include "astc_codec_internals.h"
// routine to write up to 8 bits
static inline void write_bits(int value, int bitcount, int bitoffset, uint8_t * ptr)
{
int mask = (1 << bitcount) - 1;
value &= mask;
ptr += bitoffset >> 3;
bitoffset &= 7;
value <<= bitoffset;
mask <<= bitoffset;
mask = ~mask;
ptr[0] &= mask;
ptr[0] |= value;
ptr[1] &= mask >> 8;
ptr[1] |= value >> 8;
}
// routine to read up to 8 bits
static inline int read_bits(int bitcount, int bitoffset, const uint8_t * ptr)
{
int mask = (1 << bitcount) - 1;
ptr += bitoffset >> 3;
bitoffset &= 7;
int value = ptr[0] | (ptr[1] << 8);
value >>= bitoffset;
value &= mask;
return value;
}
int bitrev8(int p)
{
p = ((p & 0xF) << 4) | ((p >> 4) & 0xF);
p = ((p & 0x33) << 2) | ((p >> 2) & 0x33);
p = ((p & 0x55) << 1) | ((p >> 1) & 0x55);
return p;
}
physical_compressed_block symbolic_to_physical(int xdim, int ydim, int zdim, const symbolic_compressed_block * sc)
{
int i, j;
physical_compressed_block res;
if (sc->block_mode == -2)
{
// UNORM16 constant-color block.
// This encodes separate constant-color blocks. There is currently
// no attempt to coalesce them into larger void-extents.
static const uint8_t cbytes[8] = { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
for (i = 0; i < 8; i++)
res.data[i] = cbytes[i];
for (i = 0; i < 4; i++)
{
res.data[2 * i + 8] = sc->constant_color[i] & 0xFF;
res.data[2 * i + 9] = (sc->constant_color[i] >> 8) & 0xFF;
}
return res;
}
if (sc->block_mode == -1)
{
// FP16 constant-color block.
// This encodes separate constant-color blocks. There is currently
// no attempt to coalesce them into larger void-extents.
static const uint8_t cbytes[8] = { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
for (i = 0; i < 8; i++)
res.data[i] = cbytes[i];
for (i = 0; i < 4; i++)
{
res.data[2 * i + 8] = sc->constant_color[i] & 0xFF;
res.data[2 * i + 9] = (sc->constant_color[i] >> 8) & 0xFF;
}
return res;
}
int partition_count = sc->partition_count;
// first, compress the weights. They are encoded as an ordinary
// integer-sequence, then bit-reversed
uint8_t weightbuf[16];
for (i = 0; i < 16; i++)
weightbuf[i] = 0;
const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim);
const decimation_table *const *ixtab2 = bsd->decimation_tables;
int weight_count = ixtab2[bsd->block_modes[sc->block_mode].decimation_mode]->num_weights;
int weight_quantization_method = bsd->block_modes[sc->block_mode].quantization_mode;
int is_dual_plane = bsd->block_modes[sc->block_mode].is_dual_plane;
int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
int bits_for_weights = compute_ise_bitcount(real_weight_count,
(quantization_method) weight_quantization_method);
if (is_dual_plane)
{
uint8_t weights[64];
for (i = 0; i < weight_count; i++)
{
weights[2 * i] = sc->plane1_weights[i];
weights[2 * i + 1] = sc->plane2_weights[i];
}
encode_ise(weight_quantization_method, real_weight_count, weights, weightbuf, 0);
}
else
{
encode_ise(weight_quantization_method, weight_count, sc->plane1_weights, weightbuf, 0);
}
for (i = 0; i < 16; i++)
res.data[i] = bitrev8(weightbuf[15 - i]);
write_bits(sc->block_mode, 11, 0, res.data);
write_bits(partition_count - 1, 2, 11, res.data);
int below_weights_pos = 128 - bits_for_weights;
// encode partition index and color endpoint types for blocks with
// 2 or more partitions.
if (partition_count > 1)
{
write_bits(sc->partition_index, 6, 13, res.data);
write_bits(sc->partition_index >> 6, PARTITION_BITS - 6, 19, res.data);
if (sc->color_formats_matched)
{
write_bits(sc->color_formats[0] << 2, 6, 13 + PARTITION_BITS, res.data);
}
else
{
// go through the selected endpoint type classes for each partition
// in order to determine the lowest class present.
int low_class = 4;
for (i = 0; i < partition_count; i++)
{
int class_of_format = sc->color_formats[i] >> 2;
if (class_of_format < low_class)
low_class = class_of_format;
}
if (low_class == 3)
low_class = 2;
int encoded_type = low_class + 1;
int bitpos = 2;
for (i = 0; i < partition_count; i++)
{
int classbit_of_format = (sc->color_formats[i] >> 2) - low_class;
encoded_type |= classbit_of_format << bitpos;
bitpos++;
}
for (i = 0; i < partition_count; i++)
{
int lowbits_of_format = sc->color_formats[i] & 3;
encoded_type |= lowbits_of_format << bitpos;
bitpos += 2;
}
int encoded_type_lowpart = encoded_type & 0x3F;
int encoded_type_highpart = encoded_type >> 6;
int encoded_type_highpart_size = (3 * partition_count) - 4;
int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size;
write_bits(encoded_type_lowpart, 6, 13 + PARTITION_BITS, res.data);
write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, res.data);
below_weights_pos -= encoded_type_highpart_size;
}
}
else
{
write_bits(sc->color_formats[0], 4, 13, res.data);
}
// in dual-plane mode, encode the color component of the second plane of weights
if (is_dual_plane)
write_bits(sc->plane2_color_component, 2, below_weights_pos - 2, res.data);
// finally, encode the color bits
// first, get hold of all the color components to encode
uint8_t values_to_encode[32];
int valuecount_to_encode = 0;
for (i = 0; i < sc->partition_count; i++)
{
int vals = 2 * (sc->color_formats[i] >> 2) + 2;
for (j = 0; j < vals; j++)
values_to_encode[j + valuecount_to_encode] = sc->color_values[i][j];
valuecount_to_encode += vals;
}
// then, encode an ISE based on them.
encode_ise(sc->color_quantization_level, valuecount_to_encode, values_to_encode, res.data, (sc->partition_count == 1 ? 17 : 19 + PARTITION_BITS));
return res;
}
void physical_to_symbolic(int xdim, int ydim, int zdim, physical_compressed_block pb, symbolic_compressed_block * res)
{
uint8_t bswapped[16];
int i, j;
res->error_block = 0;
// get hold of the block-size descriptor and the decimation tables.
const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim);
const decimation_table *const *ixtab2 = bsd->decimation_tables;
// extract header fields
int block_mode = read_bits(11, 0, pb.data);
if ((block_mode & 0x1FF) == 0x1FC)
{
// void-extent block!
// check what format the data has
if (block_mode & 0x200)
res->block_mode = -1; // floating-point
else
res->block_mode = -2; // unorm16.
res->partition_count = 0;
for (i = 0; i < 4; i++)
{
res->constant_color[i] = pb.data[2 * i + 8] | (pb.data[2 * i + 9] << 8);
}
// additionally, check that the void-extent
if (zdim == 1)
{
// 2D void-extent
int rsvbits = read_bits(2, 10, pb.data);
if (rsvbits != 3)
res->error_block = 1;
int vx_low_s = read_bits(8, 12, pb.data) | (read_bits(5, 12 + 8, pb.data) << 8);
int vx_high_s = read_bits(8, 25, pb.data) | (read_bits(5, 25 + 8, pb.data) << 8);
int vx_low_t = read_bits(8, 38, pb.data) | (read_bits(5, 38 + 8, pb.data) << 8);
int vx_high_t = read_bits(8, 51, pb.data) | (read_bits(5, 51 + 8, pb.data) << 8);
int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF;
if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones)
res->error_block = 1;
}
else
{
// 3D void-extent
int vx_low_s = read_bits(9, 10, pb.data);
int vx_high_s = read_bits(9, 19, pb.data);
int vx_low_t = read_bits(9, 28, pb.data);
int vx_high_t = read_bits(9, 37, pb.data);
int vx_low_p = read_bits(9, 46, pb.data);
int vx_high_p = read_bits(9, 55, pb.data);
int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF;
if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones)
res->error_block = 1;
}
return;
}
if (bsd->block_modes[block_mode].permit_decode == 0)
{
res->error_block = 1;
return;
}
int weight_count = ixtab2[bsd->block_modes[block_mode].decimation_mode]->num_weights;
int weight_quantization_method = bsd->block_modes[block_mode].quantization_mode;
int is_dual_plane = bsd->block_modes[block_mode].is_dual_plane;
int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
int partition_count = read_bits(2, 11, pb.data) + 1;
res->block_mode = block_mode;
res->partition_count = partition_count;
for (i = 0; i < 16; i++)
bswapped[i] = bitrev8(pb.data[15 - i]);
int bits_for_weights = compute_ise_bitcount(real_weight_count,
(quantization_method) weight_quantization_method);
int below_weights_pos = 128 - bits_for_weights;
if (is_dual_plane)
{
uint8_t indices[64];
decode_ise(weight_quantization_method, real_weight_count, bswapped, indices, 0);
for (i = 0; i < weight_count; i++)
{
res->plane1_weights[i] = indices[2 * i];
res->plane2_weights[i] = indices[2 * i + 1];
}
}
else
{
decode_ise(weight_quantization_method, weight_count, bswapped, res->plane1_weights, 0);
}
if (is_dual_plane && partition_count == 4)
res->error_block = 1;
res->color_formats_matched = 0;
// then, determine the format of each endpoint pair
int color_formats[4];
int encoded_type_highpart_size = 0;
if (partition_count == 1)
{
color_formats[0] = read_bits(4, 13, pb.data);
res->partition_index = 0;
}
else
{
encoded_type_highpart_size = (3 * partition_count) - 4;
below_weights_pos -= encoded_type_highpart_size;
int encoded_type = read_bits(6, 13 + PARTITION_BITS, pb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pb.data) << 6);
int baseclass = encoded_type & 0x3;
if (baseclass == 0)
{
for (i = 0; i < partition_count; i++)
{
color_formats[i] = (encoded_type >> 2) & 0xF;
}
below_weights_pos += encoded_type_highpart_size;
res->color_formats_matched = 1;
encoded_type_highpart_size = 0;
}
else
{
int bitpos = 2;
baseclass--;
for (i = 0; i < partition_count; i++)
{
color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2;
bitpos++;
}
for (i = 0; i < partition_count; i++)
{
color_formats[i] |= (encoded_type >> bitpos) & 3;
bitpos += 2;
}
}
res->partition_index = read_bits(6, 13, pb.data) | (read_bits(PARTITION_BITS - 6, 19, pb.data) << 6);
}
for (i = 0; i < partition_count; i++)
res->color_formats[i] = color_formats[i];
// then, determine the number of integers we need to unpack for the endpoint pairs
int color_integer_count = 0;
for (i = 0; i < partition_count; i++)
{
int endpoint_class = color_formats[i] >> 2;
color_integer_count += (endpoint_class + 1) * 2;
}
if (color_integer_count > 18)
res->error_block = 1;
// then, determine the color endpoint format to use for these integers
static const int color_bits_arr[5] = { -1, 115 - 4, 113 - 4 - PARTITION_BITS, 113 - 4 - PARTITION_BITS, 113 - 4 - PARTITION_BITS };
int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size;
if (is_dual_plane)
color_bits -= 2;
if (color_bits < 0)
color_bits = 0;
int color_quantization_level = quantization_mode_table[color_integer_count >> 1][color_bits];
res->color_quantization_level = color_quantization_level;
if (color_quantization_level < 4)
res->error_block = 1;
// then unpack the integer-bits
uint8_t values_to_decode[32];
decode_ise(color_quantization_level, color_integer_count, pb.data, values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_BITS));
// and distribute them over the endpoint types
int valuecount_to_decode = 0;
for (i = 0; i < partition_count; i++)
{
int vals = 2 * (color_formats[i] >> 2) + 2;
for (j = 0; j < vals; j++)
res->color_values[i][j] = values_to_decode[j + valuecount_to_decode];
valuecount_to_decode += vals;
}
// get hold of color component for second-plane in the case of dual plane of weights.
if (is_dual_plane)
res->plane2_color_component = read_bits(2, below_weights_pos - 2, pb.data);
}