mirror of https://github.com/axmolengine/axmol.git
394 lines
9.8 KiB
C++
394 lines
9.8 KiB
C++
|
/* Copyright (C) 2004-2013 MBSim Development Team
|
||
|
|
||
|
Code was converted for the Bullet Continuous Collision Detection and Physics Library
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
//The original version is here
|
||
|
//https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
|
||
|
//This file is re-distributed under the ZLib license, with permission of the original author
|
||
|
//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
|
||
|
//STL/std::vector replaced by btAlignedObjectArray
|
||
|
|
||
|
#include "btLemkeAlgorithm.h"
|
||
|
|
||
|
#undef BT_DEBUG_OSTREAM
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
using namespace std;
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
btScalar btMachEps()
|
||
|
{
|
||
|
static bool calculated = false;
|
||
|
static btScalar machEps = btScalar(1.);
|
||
|
if (!calculated)
|
||
|
{
|
||
|
do
|
||
|
{
|
||
|
machEps /= btScalar(2.0);
|
||
|
// If next epsilon yields 1, then break, because current
|
||
|
// epsilon is the machine epsilon.
|
||
|
} while ((btScalar)(1.0 + (machEps / btScalar(2.0))) != btScalar(1.0));
|
||
|
// printf( "\nCalculated Machine epsilon: %G\n", machEps );
|
||
|
calculated = true;
|
||
|
}
|
||
|
return machEps;
|
||
|
}
|
||
|
|
||
|
btScalar btEpsRoot()
|
||
|
{
|
||
|
static btScalar epsroot = 0.;
|
||
|
static bool alreadyCalculated = false;
|
||
|
|
||
|
if (!alreadyCalculated)
|
||
|
{
|
||
|
epsroot = btSqrt(btMachEps());
|
||
|
alreadyCalculated = true;
|
||
|
}
|
||
|
return epsroot;
|
||
|
}
|
||
|
|
||
|
btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
|
||
|
{
|
||
|
steps = 0;
|
||
|
|
||
|
int dim = m_q.size();
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
if (DEBUGLEVEL >= 1)
|
||
|
{
|
||
|
cout << "Dimension = " << dim << endl;
|
||
|
}
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
btVectorXu solutionVector(2 * dim);
|
||
|
solutionVector.setZero();
|
||
|
|
||
|
//, INIT, 0.);
|
||
|
|
||
|
btMatrixXu ident(dim, dim);
|
||
|
ident.setIdentity();
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
cout << m_M << std::endl;
|
||
|
#endif
|
||
|
|
||
|
btMatrixXu mNeg = m_M.negative();
|
||
|
|
||
|
btMatrixXu A(dim, 2 * dim + 2);
|
||
|
//
|
||
|
A.setSubMatrix(0, 0, dim - 1, dim - 1, ident);
|
||
|
A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1, mNeg);
|
||
|
A.setSubMatrix(0, 2 * dim, dim - 1, 2 * dim, -1.f);
|
||
|
A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1, m_q);
|
||
|
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
cout << A << std::endl;
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
// btVectorXu q_;
|
||
|
// q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
|
||
|
|
||
|
btAlignedObjectArray<int> basis;
|
||
|
//At first, all w-values are in the basis
|
||
|
for (int i = 0; i < dim; i++)
|
||
|
basis.push_back(i);
|
||
|
|
||
|
int pivotRowIndex = -1;
|
||
|
btScalar minValue = 1e30f;
|
||
|
bool greaterZero = true;
|
||
|
for (int i = 0; i < dim; i++)
|
||
|
{
|
||
|
btScalar v = A(i, 2 * dim + 1);
|
||
|
if (v < minValue)
|
||
|
{
|
||
|
minValue = v;
|
||
|
pivotRowIndex = i;
|
||
|
}
|
||
|
if (v < 0)
|
||
|
greaterZero = false;
|
||
|
}
|
||
|
|
||
|
// int pivotRowIndex = q_.minIndex();//minIndex(q_); // first row is that with lowest q-value
|
||
|
int z0Row = pivotRowIndex; // remember the col of z0 for ending algorithm afterwards
|
||
|
int pivotColIndex = 2 * dim; // first col is that of z0
|
||
|
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
if (DEBUGLEVEL >= 3)
|
||
|
{
|
||
|
// cout << "A: " << A << endl;
|
||
|
cout << "pivotRowIndex " << pivotRowIndex << endl;
|
||
|
cout << "pivotColIndex " << pivotColIndex << endl;
|
||
|
cout << "Basis: ";
|
||
|
for (int i = 0; i < basis.size(); i++)
|
||
|
cout << basis[i] << " ";
|
||
|
cout << endl;
|
||
|
}
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
if (!greaterZero)
|
||
|
{
|
||
|
if (maxloops == 0)
|
||
|
{
|
||
|
maxloops = 100;
|
||
|
// maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
|
||
|
}
|
||
|
|
||
|
/*start looping*/
|
||
|
for (steps = 0; steps < maxloops; steps++)
|
||
|
{
|
||
|
GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
if (DEBUGLEVEL >= 3)
|
||
|
{
|
||
|
// cout << "A: " << A << endl;
|
||
|
cout << "pivotRowIndex " << pivotRowIndex << endl;
|
||
|
cout << "pivotColIndex " << pivotColIndex << endl;
|
||
|
cout << "Basis: ";
|
||
|
for (int i = 0; i < basis.size(); i++)
|
||
|
cout << basis[i] << " ";
|
||
|
cout << endl;
|
||
|
}
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
int pivotColIndexOld = pivotColIndex;
|
||
|
|
||
|
/*find new column index */
|
||
|
if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
|
||
|
pivotColIndex = basis[pivotRowIndex] + dim;
|
||
|
else
|
||
|
//else do it the other way round and get in the corresponding w-value
|
||
|
pivotColIndex = basis[pivotRowIndex] - dim;
|
||
|
|
||
|
/*the column becomes part of the basis*/
|
||
|
basis[pivotRowIndex] = pivotColIndexOld;
|
||
|
bool isRayTermination = false;
|
||
|
pivotRowIndex = findLexicographicMinimum(A, pivotColIndex, z0Row, isRayTermination);
|
||
|
if (isRayTermination)
|
||
|
{
|
||
|
break; // ray termination
|
||
|
}
|
||
|
if (z0Row == pivotRowIndex)
|
||
|
{ //if z0 leaves the basis the solution is found --> one last elimination step is necessary
|
||
|
GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
|
||
|
basis[pivotRowIndex] = pivotColIndex; //update basis
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
if (DEBUGLEVEL >= 1)
|
||
|
{
|
||
|
cout << "Number of loops: " << steps << endl;
|
||
|
cout << "Number of maximal loops: " << maxloops << endl;
|
||
|
}
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
if (!validBasis(basis))
|
||
|
{
|
||
|
info = -1;
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
if (DEBUGLEVEL >= 1)
|
||
|
cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
return solutionVector;
|
||
|
}
|
||
|
}
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
if (DEBUGLEVEL >= 2)
|
||
|
{
|
||
|
// cout << "A: " << A << endl;
|
||
|
cout << "pivotRowIndex " << pivotRowIndex << endl;
|
||
|
cout << "pivotColIndex " << pivotColIndex << endl;
|
||
|
}
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
|
||
|
for (int i = 0; i < basis.size(); i++)
|
||
|
{
|
||
|
solutionVector[basis[i]] = A(i, 2 * dim + 1); //q_[i];
|
||
|
}
|
||
|
|
||
|
info = 0;
|
||
|
|
||
|
return solutionVector;
|
||
|
}
|
||
|
|
||
|
int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int& pivotColIndex, const int& z0Row, bool& isRayTermination)
|
||
|
{
|
||
|
isRayTermination = false;
|
||
|
btAlignedObjectArray<int> activeRows;
|
||
|
|
||
|
bool firstRow = true;
|
||
|
btScalar currentMin = 0.0;
|
||
|
|
||
|
int dim = A.rows();
|
||
|
|
||
|
for (int row = 0; row < dim; row++)
|
||
|
{
|
||
|
const btScalar denom = A(row, pivotColIndex);
|
||
|
|
||
|
if (denom > btMachEps())
|
||
|
{
|
||
|
const btScalar q = A(row, dim + dim + 1) / denom;
|
||
|
if (firstRow)
|
||
|
{
|
||
|
currentMin = q;
|
||
|
activeRows.push_back(row);
|
||
|
firstRow = false;
|
||
|
}
|
||
|
else if (fabs(currentMin - q) < btMachEps())
|
||
|
{
|
||
|
activeRows.push_back(row);
|
||
|
}
|
||
|
else if (currentMin > q)
|
||
|
{
|
||
|
currentMin = q;
|
||
|
activeRows.clear();
|
||
|
activeRows.push_back(row);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (activeRows.size() == 0)
|
||
|
{
|
||
|
isRayTermination = true;
|
||
|
return 0;
|
||
|
}
|
||
|
else if (activeRows.size() == 1)
|
||
|
{
|
||
|
return activeRows[0];
|
||
|
}
|
||
|
|
||
|
// if there are multiple rows, check if they contain the row for z_0.
|
||
|
for (int i = 0; i < activeRows.size(); i++)
|
||
|
{
|
||
|
if (activeRows[i] == z0Row)
|
||
|
{
|
||
|
return z0Row;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// look through the columns of the inverse of the basic matrix from left to right until the tie is broken.
|
||
|
for (int col = 0; col < dim ; col++)
|
||
|
{
|
||
|
btAlignedObjectArray<int> activeRowsCopy(activeRows);
|
||
|
activeRows.clear();
|
||
|
firstRow = true;
|
||
|
for (int i = 0; i<activeRowsCopy.size();i++)
|
||
|
{
|
||
|
const int row = activeRowsCopy[i];
|
||
|
|
||
|
// denom is positive here as an invariant.
|
||
|
const btScalar denom = A(row, pivotColIndex);
|
||
|
const btScalar ratio = A(row, col) / denom;
|
||
|
if (firstRow)
|
||
|
{
|
||
|
currentMin = ratio;
|
||
|
activeRows.push_back(row);
|
||
|
firstRow = false;
|
||
|
}
|
||
|
else if (fabs(currentMin - ratio) < btMachEps())
|
||
|
{
|
||
|
activeRows.push_back(row);
|
||
|
}
|
||
|
else if (currentMin > ratio)
|
||
|
{
|
||
|
currentMin = ratio;
|
||
|
activeRows.clear();
|
||
|
activeRows.push_back(row);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (activeRows.size() == 1)
|
||
|
{
|
||
|
return activeRows[0];
|
||
|
}
|
||
|
}
|
||
|
// must not reach here.
|
||
|
isRayTermination = true;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis)
|
||
|
{
|
||
|
btScalar a = -1 / A(pivotRowIndex, pivotColumnIndex);
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
cout << A << std::endl;
|
||
|
#endif
|
||
|
|
||
|
for (int i = 0; i < A.rows(); i++)
|
||
|
{
|
||
|
if (i != pivotRowIndex)
|
||
|
{
|
||
|
for (int j = 0; j < A.cols(); j++)
|
||
|
{
|
||
|
if (j != pivotColumnIndex)
|
||
|
{
|
||
|
btScalar v = A(i, j);
|
||
|
v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
|
||
|
A.setElem(i, j, v);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
cout << A << std::endl;
|
||
|
#endif //BT_DEBUG_OSTREAM
|
||
|
for (int i = 0; i < A.cols(); i++)
|
||
|
{
|
||
|
A.mulElem(pivotRowIndex, i, -a);
|
||
|
}
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
cout << A << std::endl;
|
||
|
#endif //#ifdef BT_DEBUG_OSTREAM
|
||
|
|
||
|
for (int i = 0; i < A.rows(); i++)
|
||
|
{
|
||
|
if (i != pivotRowIndex)
|
||
|
{
|
||
|
A.setElem(i, pivotColumnIndex, 0);
|
||
|
}
|
||
|
}
|
||
|
#ifdef BT_DEBUG_OSTREAM
|
||
|
cout << A << std::endl;
|
||
|
#endif //#ifdef BT_DEBUG_OSTREAM
|
||
|
}
|
||
|
|
||
|
bool btLemkeAlgorithm::greaterZero(const btVectorXu& vector)
|
||
|
{
|
||
|
bool isGreater = true;
|
||
|
for (int i = 0; i < vector.size(); i++)
|
||
|
{
|
||
|
if (vector[i] < 0)
|
||
|
{
|
||
|
isGreater = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return isGreater;
|
||
|
}
|
||
|
|
||
|
bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis)
|
||
|
{
|
||
|
bool isValid = true;
|
||
|
for (int i = 0; i < basis.size(); i++)
|
||
|
{
|
||
|
if (basis[i] >= basis.size() * 2)
|
||
|
{ //then z0 is in the base
|
||
|
isValid = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return isValid;
|
||
|
}
|