axmol/thirdparty/poly2tri/common/shapes.cc

412 lines
10 KiB
C++
Raw Normal View History

/*
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "shapes.h"
#include <cassert>
#include <iostream>
namespace p2t {
Point::Point(double x, double y) : x(x), y(y)
{
}
std::ostream& operator<<(std::ostream& out, const Point& point) {
return out << point.x << "," << point.y;
}
Triangle::Triangle(Point& a, Point& b, Point& c)
{
points_[0] = &a; points_[1] = &b; points_[2] = &c;
neighbors_[0] = nullptr; neighbors_[1] = nullptr; neighbors_[2] = nullptr;
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
interior_ = false;
}
// Update neighbor pointers
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
{
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
neighbors_[0] = t;
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
neighbors_[1] = t;
else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
neighbors_[2] = t;
else
assert(0);
}
// Exhaustive search to update neighbor pointers
void Triangle::MarkNeighbor(Triangle& t)
{
if (t.Contains(points_[1], points_[2])) {
neighbors_[0] = &t;
t.MarkNeighbor(points_[1], points_[2], this);
} else if (t.Contains(points_[0], points_[2])) {
neighbors_[1] = &t;
t.MarkNeighbor(points_[0], points_[2], this);
} else if (t.Contains(points_[0], points_[1])) {
neighbors_[2] = &t;
t.MarkNeighbor(points_[0], points_[1], this);
}
}
/**
* Clears all references to all other triangles and points
*/
void Triangle::Clear()
{
Triangle *t;
for (auto& neighbor : neighbors_) {
t = neighbor;
if (t != nullptr) {
t->ClearNeighbor(this);
}
}
ClearNeighbors();
points_[0]=points_[1]=points_[2] = nullptr;
}
void Triangle::ClearNeighbor(const Triangle *triangle )
{
if( neighbors_[0] == triangle )
{
neighbors_[0] = nullptr;
}
else if( neighbors_[1] == triangle )
{
neighbors_[1] = nullptr;
}
else
{
neighbors_[2] = nullptr;
}
}
void Triangle::ClearNeighbors()
{
neighbors_[0] = nullptr;
neighbors_[1] = nullptr;
neighbors_[2] = nullptr;
}
void Triangle::ClearDelunayEdges()
{
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
}
Point* Triangle::OppositePoint(Triangle& t, const Point& p)
{
Point *cw = t.PointCW(p);
return PointCW(*cw);
}
// Legalized triangle by rotating clockwise around point(0)
void Triangle::Legalize(Point& point)
{
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &point;
}
// Legalize triagnle by rotating clockwise around oPoint
void Triangle::Legalize(Point& opoint, Point& npoint)
{
if (&opoint == points_[0]) {
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &npoint;
} else if (&opoint == points_[1]) {
points_[2] = points_[1];
points_[1] = points_[0];
points_[0] = &npoint;
} else if (&opoint == points_[2]) {
points_[0] = points_[2];
points_[2] = points_[1];
points_[1] = &npoint;
} else {
assert(0);
}
}
int Triangle::Index(const Point* p)
{
if (p == points_[0]) {
return 0;
} else if (p == points_[1]) {
return 1;
} else if (p == points_[2]) {
return 2;
}
assert(0);
return -1;
}
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
{
if (points_[0] == p1) {
if (points_[1] == p2) {
return 2;
} else if (points_[2] == p2) {
return 1;
}
} else if (points_[1] == p1) {
if (points_[2] == p2) {
return 0;
} else if (points_[0] == p2) {
return 2;
}
} else if (points_[2] == p1) {
if (points_[0] == p2) {
return 1;
} else if (points_[1] == p2) {
return 0;
}
}
return -1;
}
void Triangle::MarkConstrainedEdge(int index)
{
constrained_edge[index] = true;
}
void Triangle::MarkConstrainedEdge(Edge& edge)
{
MarkConstrainedEdge(edge.p, edge.q);
}
// Mark edge as constrained
void Triangle::MarkConstrainedEdge(Point* p, Point* q)
{
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
constrained_edge[2] = true;
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
constrained_edge[1] = true;
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
constrained_edge[0] = true;
}
}
// The point counter-clockwise to given point
Point* Triangle::PointCW(const Point& point)
{
if (&point == points_[0]) {
return points_[2];
} else if (&point == points_[1]) {
return points_[0];
} else if (&point == points_[2]) {
return points_[1];
}
assert(0);
return nullptr;
}
// The point counter-clockwise to given point
Point* Triangle::PointCCW(const Point& point)
{
if (&point == points_[0]) {
return points_[1];
} else if (&point == points_[1]) {
return points_[2];
} else if (&point == points_[2]) {
return points_[0];
}
assert(0);
return nullptr;
}
// The neighbor across to given point
Triangle* Triangle::NeighborAcross(const Point& point)
{
if (&point == points_[0]) {
return neighbors_[0];
} else if (&point == points_[1]) {
return neighbors_[1];
}
return neighbors_[2];
}
// The neighbor clockwise to given point
Triangle* Triangle::NeighborCW(const Point& point)
{
if (&point == points_[0]) {
return neighbors_[1];
} else if (&point == points_[1]) {
return neighbors_[2];
}
return neighbors_[0];
}
// The neighbor counter-clockwise to given point
Triangle* Triangle::NeighborCCW(const Point& point)
{
if (&point == points_[0]) {
return neighbors_[2];
} else if (&point == points_[1]) {
return neighbors_[0];
}
return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCCW(const Point& p)
{
if (&p == points_[0]) {
return constrained_edge[2];
} else if (&p == points_[1]) {
return constrained_edge[0];
}
return constrained_edge[1];
}
bool Triangle::GetConstrainedEdgeCW(const Point& p)
{
if (&p == points_[0]) {
return constrained_edge[1];
} else if (&p == points_[1]) {
return constrained_edge[2];
}
return constrained_edge[0];
}
void Triangle::SetConstrainedEdgeCCW(const Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[2] = ce;
} else if (&p == points_[1]) {
constrained_edge[0] = ce;
} else {
constrained_edge[1] = ce;
}
}
void Triangle::SetConstrainedEdgeCW(const Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[1] = ce;
} else if (&p == points_[1]) {
constrained_edge[2] = ce;
} else {
constrained_edge[0] = ce;
}
}
bool Triangle::GetDelunayEdgeCCW(const Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[2];
} else if (&p == points_[1]) {
return delaunay_edge[0];
}
return delaunay_edge[1];
}
bool Triangle::GetDelunayEdgeCW(const Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[1];
} else if (&p == points_[1]) {
return delaunay_edge[2];
}
return delaunay_edge[0];
}
void Triangle::SetDelunayEdgeCCW(const Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[2] = e;
} else if (&p == points_[1]) {
delaunay_edge[0] = e;
} else {
delaunay_edge[1] = e;
}
}
void Triangle::SetDelunayEdgeCW(const Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[1] = e;
} else if (&p == points_[1]) {
delaunay_edge[2] = e;
} else {
delaunay_edge[0] = e;
}
}
void Triangle::DebugPrint()
{
std::cout << *points_[0] << " " << *points_[1] << " " << *points_[2] << std::endl;
}
bool Triangle::CircumcicleContains(const Point& point) const
{
assert(IsCounterClockwise());
const double dx = points_[0]->x - point.x;
const double dy = points_[0]->y - point.y;
const double ex = points_[1]->x - point.x;
const double ey = points_[1]->y - point.y;
const double fx = points_[2]->x - point.x;
const double fy = points_[2]->y - point.y;
const double ap = dx * dx + dy * dy;
const double bp = ex * ex + ey * ey;
const double cp = fx * fx + fy * fy;
return (dx * (fy * bp - cp * ey) - dy * (fx * bp - cp * ex) + ap * (fx * ey - fy * ex)) < 0;
}
bool Triangle::IsCounterClockwise() const
{
return (points_[1]->x - points_[0]->x) * (points_[2]->y - points_[0]->y) -
(points_[2]->x - points_[0]->x) * (points_[1]->y - points_[0]->y) >
0;
}
bool IsDelaunay(const std::vector<p2t::Triangle*>& triangles)
{
for (const auto triangle : triangles) {
for (const auto other : triangles) {
if (triangle == other) {
continue;
}
for (int i = 0; i < 3; ++i) {
if (triangle->CircumcicleContains(*other->GetPoint(i))) {
return false;
}
}
}
}
return true;
}
} // namespace p2t