axmol/extensions/Particle3D/PU/CCPUSphereCollider.cpp

202 lines
7.2 KiB
C++
Raw Normal View History

2019-11-23 20:27:39 +08:00
/****************************************************************************
Copyright (C) 2013 Henry van Merode. All rights reserved.
Copyright (c) 2015-2016 Chukong Technologies Inc.
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
2021-12-25 10:04:45 +08:00
https://axis-project.github.io/
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "CCPUSphereCollider.h"
#include "extensions/Particle3D/PU/CCPUParticleSystem3D.h"
NS_AX_BEGIN
2019-11-23 20:27:39 +08:00
// Constants
const float PUSphereCollider::DEFAULT_RADIUS = 100.0f;
//-----------------------------------------------------------------------
2021-12-25 10:04:45 +08:00
PUSphereCollider::PUSphereCollider() : PUBaseCollider(), _radius(DEFAULT_RADIUS), _innerCollision(false) {}
2019-11-23 20:27:39 +08:00
2021-12-25 10:04:45 +08:00
PUSphereCollider::~PUSphereCollider(void) {}
2019-11-23 20:27:39 +08:00
//-----------------------------------------------------------------------
float PUSphereCollider::getRadius() const
{
return _radius;
}
//-----------------------------------------------------------------------
void PUSphereCollider::setRadius(const float radius)
{
_radius = radius;
_sphere.setRadius(_radius);
}
//-----------------------------------------------------------------------
bool PUSphereCollider::isInnerCollision() const
{
return _innerCollision;
}
//-----------------------------------------------------------------------
void PUSphereCollider::setInnerCollision(bool innerCollision)
{
_innerCollision = innerCollision;
}
//-----------------------------------------------------------------------
void PUSphereCollider::calculateDirectionAfterCollision(PUParticle3D* particle, Vec3 distance, float distanceLength)
{
switch (_collisionType)
{
2021-12-25 10:04:45 +08:00
case PUBaseCollider::CT_BOUNCE:
{
/** If the particle is on the surface (or just inside the sphere); bounce it
Make use of formula R = 2 * (-I dot N) * N + I, where
R = the new direction vector
I = the old (unit) direction vector before the collision
N = the Normal at the collision point
*/
float directionLength = particle->direction.length();
particle->direction.normalize();
distance.normalize();
particle->direction = 2 * (-particle->direction.dot(distance)) * distance + particle->direction;
// Adjust to original speed
particle->direction *= directionLength;
// Accelerate/slow down, using the bounce value
particle->direction *= _bouncyness;
}
break;
case PUBaseCollider::CT_FLOW:
{
/** Reset the position (on the sphere), but keep the direction.
This doesn't really work good for box-type collisions, because it doesn't take the particle
dimensions into account.
*/
float scaledRadius = 0.3333f * (_affectorScale.x + _affectorScale.y + _affectorScale.z) * _radius;
particle->position = _derivedPosition + distance * (scaledRadius / distanceLength);
}
break;
default:
2019-11-23 20:27:39 +08:00
break;
}
}
2021-12-25 10:04:45 +08:00
void PUSphereCollider::updatePUAffector(PUParticle3D* particle, float /*deltaTime*/)
2019-11-23 20:27:39 +08:00
{
// for (auto&& iter : _particleSystem->getParticles())
2019-11-23 20:27:39 +08:00
{
2021-12-25 10:04:45 +08:00
// PUParticle3D *particle = iter;
_predictedPosition = particle->position + _velocityScale * particle->direction;
bool collision = false;
Vec3 distance = particle->position - _derivedPosition;
2019-11-23 20:27:39 +08:00
float distanceLength = distance.length();
2021-12-25 10:04:45 +08:00
float scaledRadius =
0.3333f * (_affectorScale.x + _affectorScale.y + _affectorScale.z) * _radius; // Scaling changed in V 1.3.1
2019-11-23 20:27:39 +08:00
2021-12-25 10:04:45 +08:00
switch (_intersectionType)
2019-11-23 20:27:39 +08:00
{
case PUBaseCollider::IT_POINT:
2021-12-25 10:04:45 +08:00
{
// Validate for a point-sphere intersection
if (_innerCollision == (distanceLength > scaledRadius))
2019-11-23 20:27:39 +08:00
{
2021-12-25 10:04:45 +08:00
// Collision detected (re-position the particle)
particle->position -= _velocityScale * particle->direction;
collision = true;
}
else
{
distance = _predictedPosition - _derivedPosition;
distanceLength = distance.length();
2019-11-23 20:27:39 +08:00
if (_innerCollision == (distanceLength > scaledRadius))
{
2021-12-25 10:04:45 +08:00
// Collision detected
2019-11-23 20:27:39 +08:00
collision = true;
}
}
2021-12-25 10:04:45 +08:00
}
break;
2019-11-23 20:27:39 +08:00
case PUBaseCollider::IT_BOX:
2021-12-25 10:04:45 +08:00
{
//// Validate for a box-sphere intersection
// if (particle->particleType != Particle::PT_VISUAL)
// break;
AABB box;
populateAlignedBox(box, particle->position, particle->width, particle->height, particle->depth);
// FIXME
// if (_innerCollision != box.intersects(_sphere))
//{
// // Collision detected (re-position the particle)
// particle->position -= _velocityScale * particle->direction;
// collision = true;
// }
// else
//{
// AABB box;
// populateAlignedBox(box,
// _predictedPosition,
// particle->width,
// particle->height,
// particle->depth);
// if (_innerCollision != box.intersects(_sphere))
// {
// // Collision detected
// collision = true;
// }
// }
}
break;
2019-11-23 20:27:39 +08:00
}
if (collision)
{
calculateDirectionAfterCollision(particle, distance, distanceLength);
calculateRotationSpeedAfterCollision(particle);
particle->addEventFlags(PUParticle3D::PEF_COLLIDED);
}
}
}
2021-12-25 10:04:45 +08:00
void PUSphereCollider::preUpdateAffector(float /*deltaTime*/)
2019-11-23 20:27:39 +08:00
{
// Calculate the affectors' center position.
_sphere.setCenter(getDerivedPosition());
}
PUSphereCollider* PUSphereCollider::create()
{
2021-12-08 00:11:53 +08:00
auto psc = new PUSphereCollider();
2019-11-23 20:27:39 +08:00
psc->autorelease();
return psc;
}
2021-12-25 10:04:45 +08:00
void PUSphereCollider::copyAttributesTo(PUAffector* affector)
2019-11-23 20:27:39 +08:00
{
PUAffector::copyAttributesTo(affector);
PUSphereCollider* sphereCollider = static_cast<PUSphereCollider*>(affector);
2021-12-25 10:04:45 +08:00
sphereCollider->_radius = _radius;
sphereCollider->_sphere = _sphere;
sphereCollider->_innerCollision = _innerCollision;
2019-11-23 20:27:39 +08:00
}
NS_AX_END