axmol/thirdparty/bullet/BulletCollision/CollisionShapes/btMultiSphereShape.cpp

170 lines
5.2 KiB
C++
Raw Normal View History

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#if defined(_WIN32) || defined(__i386__)
#define BT_USE_SSE_IN_API
#endif
#include "btMultiSphereShape.h"
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
#include "LinearMath/btQuaternion.h"
#include "LinearMath/btSerializer.h"
btMultiSphereShape::btMultiSphereShape(const btVector3* positions, const btScalar* radi, int numSpheres)
: btConvexInternalAabbCachingShape()
{
m_shapeType = MULTI_SPHERE_SHAPE_PROXYTYPE;
//btScalar startMargin = btScalar(BT_LARGE_FLOAT);
m_localPositionArray.resize(numSpheres);
m_radiArray.resize(numSpheres);
for (int i = 0; i < numSpheres; i++)
{
m_localPositionArray[i] = positions[i];
m_radiArray[i] = radi[i];
}
recalcLocalAabb();
}
#ifndef MIN
#define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#endif
btVector3 btMultiSphereShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0) const
{
btVector3 supVec(0, 0, 0);
btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < (SIMD_EPSILON * SIMD_EPSILON))
{
vec.setValue(1, 0, 0);
}
else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
const btVector3* pos = &m_localPositionArray[0];
const btScalar* rad = &m_radiArray[0];
int numSpheres = m_localPositionArray.size();
for (int k = 0; k < numSpheres; k += 128)
{
btVector3 temp[128];
int inner_count = MIN(numSpheres - k, 128);
for (long i = 0; i < inner_count; i++)
{
temp[i] = (*pos) * m_localScaling + vec * m_localScaling * (*rad) - vec * getMargin();
pos++;
rad++;
}
long i = vec.maxDot(temp, inner_count, newDot);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = temp[i];
}
}
return supVec;
}
void btMultiSphereShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors, btVector3* supportVerticesOut, int numVectors) const
{
for (int j = 0; j < numVectors; j++)
{
btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
const btVector3& vec = vectors[j];
btVector3 vtx;
btScalar newDot;
const btVector3* pos = &m_localPositionArray[0];
const btScalar* rad = &m_radiArray[0];
int numSpheres = m_localPositionArray.size();
for (int k = 0; k < numSpheres; k += 128)
{
btVector3 temp[128];
int inner_count = MIN(numSpheres - k, 128);
for (long i = 0; i < inner_count; i++)
{
temp[i] = (*pos) * m_localScaling + vec * m_localScaling * (*rad) - vec * getMargin();
pos++;
rad++;
}
long i = vec.maxDot(temp, inner_count, newDot);
if (newDot > maxDot)
{
maxDot = newDot;
supportVerticesOut[j] = temp[i];
}
}
}
}
void btMultiSphereShape::calculateLocalInertia(btScalar mass, btVector3& inertia) const
{
//as an approximation, take the inertia of the box that bounds the spheres
btVector3 localAabbMin, localAabbMax;
getCachedLocalAabb(localAabbMin, localAabbMax);
btVector3 halfExtents = (localAabbMax - localAabbMin) * btScalar(0.5);
btScalar lx = btScalar(2.) * (halfExtents.x());
btScalar ly = btScalar(2.) * (halfExtents.y());
btScalar lz = btScalar(2.) * (halfExtents.z());
inertia.setValue(mass / (btScalar(12.0)) * (ly * ly + lz * lz),
mass / (btScalar(12.0)) * (lx * lx + lz * lz),
mass / (btScalar(12.0)) * (lx * lx + ly * ly));
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
const char* btMultiSphereShape::serialize(void* dataBuffer, btSerializer* serializer) const
{
btMultiSphereShapeData* shapeData = (btMultiSphereShapeData*)dataBuffer;
btConvexInternalShape::serialize(&shapeData->m_convexInternalShapeData, serializer);
int numElem = m_localPositionArray.size();
shapeData->m_localPositionArrayPtr = numElem ? (btPositionAndRadius*)serializer->getUniquePointer((void*)&m_localPositionArray[0]) : 0;
shapeData->m_localPositionArraySize = numElem;
if (numElem)
{
btChunk* chunk = serializer->allocate(sizeof(btPositionAndRadius), numElem);
btPositionAndRadius* memPtr = (btPositionAndRadius*)chunk->m_oldPtr;
for (int i = 0; i < numElem; i++, memPtr++)
{
m_localPositionArray[i].serializeFloat(memPtr->m_pos);
memPtr->m_radius = float(m_radiArray[i]);
}
serializer->finalizeChunk(chunk, "btPositionAndRadius", BT_ARRAY_CODE, (void*)&m_localPositionArray[0]);
}
// Fill padding with zeros to appease msan.
memset(shapeData->m_padding, 0, sizeof(shapeData->m_padding));
return "btMultiSphereShapeData";
}