mirror of https://github.com/axmolengine/axmol.git
286 lines
7.6 KiB
C
286 lines
7.6 KiB
C
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
#ifndef BT_SOLVER_BODY_H
|
||
|
#define BT_SOLVER_BODY_H
|
||
|
|
||
|
class btRigidBody;
|
||
|
#include "LinearMath/btVector3.h"
|
||
|
#include "LinearMath/btMatrix3x3.h"
|
||
|
|
||
|
#include "LinearMath/btAlignedAllocator.h"
|
||
|
#include "LinearMath/btTransformUtil.h"
|
||
|
|
||
|
///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
|
||
|
#ifdef BT_USE_SSE
|
||
|
#define USE_SIMD 1
|
||
|
#endif //
|
||
|
|
||
|
#ifdef USE_SIMD
|
||
|
|
||
|
struct btSimdScalar
|
||
|
{
|
||
|
SIMD_FORCE_INLINE btSimdScalar()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btSimdScalar(float fl)
|
||
|
: m_vec128(_mm_set1_ps(fl))
|
||
|
{
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btSimdScalar(__m128 v128)
|
||
|
: m_vec128(v128)
|
||
|
{
|
||
|
}
|
||
|
union {
|
||
|
__m128 m_vec128;
|
||
|
float m_floats[4];
|
||
|
int m_ints[4];
|
||
|
btScalar m_unusedPadding;
|
||
|
};
|
||
|
SIMD_FORCE_INLINE __m128 get128()
|
||
|
{
|
||
|
return m_vec128;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE const __m128 get128() const
|
||
|
{
|
||
|
return m_vec128;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void set128(__m128 v128)
|
||
|
{
|
||
|
m_vec128 = v128;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE operator __m128()
|
||
|
{
|
||
|
return m_vec128;
|
||
|
}
|
||
|
SIMD_FORCE_INLINE operator const __m128() const
|
||
|
{
|
||
|
return m_vec128;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE operator float() const
|
||
|
{
|
||
|
return m_floats[0];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
///@brief Return the elementwise product of two btSimdScalar
|
||
|
SIMD_FORCE_INLINE btSimdScalar
|
||
|
operator*(const btSimdScalar& v1, const btSimdScalar& v2)
|
||
|
{
|
||
|
return btSimdScalar(_mm_mul_ps(v1.get128(), v2.get128()));
|
||
|
}
|
||
|
|
||
|
///@brief Return the elementwise product of two btSimdScalar
|
||
|
SIMD_FORCE_INLINE btSimdScalar
|
||
|
operator+(const btSimdScalar& v1, const btSimdScalar& v2)
|
||
|
{
|
||
|
return btSimdScalar(_mm_add_ps(v1.get128(), v2.get128()));
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
#define btSimdScalar btScalar
|
||
|
#endif
|
||
|
|
||
|
///The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
|
||
|
ATTRIBUTE_ALIGNED16(struct)
|
||
|
btSolverBody
|
||
|
{
|
||
|
BT_DECLARE_ALIGNED_ALLOCATOR();
|
||
|
btTransform m_worldTransform;
|
||
|
btVector3 m_deltaLinearVelocity;
|
||
|
btVector3 m_deltaAngularVelocity;
|
||
|
btVector3 m_angularFactor;
|
||
|
btVector3 m_linearFactor;
|
||
|
btVector3 m_invMass;
|
||
|
btVector3 m_pushVelocity;
|
||
|
btVector3 m_turnVelocity;
|
||
|
btVector3 m_linearVelocity;
|
||
|
btVector3 m_angularVelocity;
|
||
|
btVector3 m_externalForceImpulse;
|
||
|
btVector3 m_externalTorqueImpulse;
|
||
|
|
||
|
btRigidBody* m_originalBody;
|
||
|
void setWorldTransform(const btTransform& worldTransform)
|
||
|
{
|
||
|
m_worldTransform = worldTransform;
|
||
|
}
|
||
|
|
||
|
const btTransform& getWorldTransform() const
|
||
|
{
|
||
|
return m_worldTransform;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity) const
|
||
|
{
|
||
|
if (m_originalBody)
|
||
|
velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity + m_externalTorqueImpulse).cross(rel_pos);
|
||
|
else
|
||
|
velocity.setValue(0, 0, 0);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity) const
|
||
|
{
|
||
|
if (m_originalBody)
|
||
|
velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
|
||
|
else
|
||
|
velocity.setValue(0, 0, 0);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void getAngularVelocity(btVector3 & angVel) const
|
||
|
{
|
||
|
if (m_originalBody)
|
||
|
angVel = m_angularVelocity + m_deltaAngularVelocity;
|
||
|
else
|
||
|
angVel.setValue(0, 0, 0);
|
||
|
}
|
||
|
|
||
|
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
||
|
SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
|
||
|
{
|
||
|
if (m_originalBody)
|
||
|
{
|
||
|
m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
|
||
|
m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent, btScalar impulseMagnitude)
|
||
|
{
|
||
|
if (m_originalBody)
|
||
|
{
|
||
|
m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
|
||
|
m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const btVector3& getDeltaLinearVelocity() const
|
||
|
{
|
||
|
return m_deltaLinearVelocity;
|
||
|
}
|
||
|
|
||
|
const btVector3& getDeltaAngularVelocity() const
|
||
|
{
|
||
|
return m_deltaAngularVelocity;
|
||
|
}
|
||
|
|
||
|
const btVector3& getPushVelocity() const
|
||
|
{
|
||
|
return m_pushVelocity;
|
||
|
}
|
||
|
|
||
|
const btVector3& getTurnVelocity() const
|
||
|
{
|
||
|
return m_turnVelocity;
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////
|
||
|
///some internal methods, don't use them
|
||
|
|
||
|
btVector3& internalGetDeltaLinearVelocity()
|
||
|
{
|
||
|
return m_deltaLinearVelocity;
|
||
|
}
|
||
|
|
||
|
btVector3& internalGetDeltaAngularVelocity()
|
||
|
{
|
||
|
return m_deltaAngularVelocity;
|
||
|
}
|
||
|
|
||
|
const btVector3& internalGetAngularFactor() const
|
||
|
{
|
||
|
return m_angularFactor;
|
||
|
}
|
||
|
|
||
|
const btVector3& internalGetInvMass() const
|
||
|
{
|
||
|
return m_invMass;
|
||
|
}
|
||
|
|
||
|
void internalSetInvMass(const btVector3& invMass)
|
||
|
{
|
||
|
m_invMass = invMass;
|
||
|
}
|
||
|
|
||
|
btVector3& internalGetPushVelocity()
|
||
|
{
|
||
|
return m_pushVelocity;
|
||
|
}
|
||
|
|
||
|
btVector3& internalGetTurnVelocity()
|
||
|
{
|
||
|
return m_turnVelocity;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity) const
|
||
|
{
|
||
|
velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void internalGetAngularVelocity(btVector3 & angVel) const
|
||
|
{
|
||
|
angVel = m_angularVelocity + m_deltaAngularVelocity;
|
||
|
}
|
||
|
|
||
|
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
||
|
SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
|
||
|
{
|
||
|
if (m_originalBody)
|
||
|
{
|
||
|
m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
|
||
|
m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void writebackVelocity()
|
||
|
{
|
||
|
if (m_originalBody)
|
||
|
{
|
||
|
m_linearVelocity += m_deltaLinearVelocity;
|
||
|
m_angularVelocity += m_deltaAngularVelocity;
|
||
|
|
||
|
//m_originalBody->setCompanionId(-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
|
||
|
{
|
||
|
(void)timeStep;
|
||
|
if (m_originalBody)
|
||
|
{
|
||
|
m_linearVelocity += m_deltaLinearVelocity;
|
||
|
m_angularVelocity += m_deltaAngularVelocity;
|
||
|
|
||
|
//correct the position/orientation based on push/turn recovery
|
||
|
btTransform newTransform;
|
||
|
if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
|
||
|
{
|
||
|
// btQuaternion orn = m_worldTransform.getRotation();
|
||
|
btTransformUtil::integrateTransform(m_worldTransform, m_pushVelocity, m_turnVelocity * splitImpulseTurnErp, timeStep, newTransform);
|
||
|
m_worldTransform = newTransform;
|
||
|
}
|
||
|
//m_worldTransform.setRotation(orn);
|
||
|
//m_originalBody->setCompanionId(-1);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#endif //BT_SOLVER_BODY_H
|