axmol/tests/cpp-tests/Classes/ShaderTest/shaderTest.psh.h

438 lines
16 KiB
C
Raw Normal View History

/****************************************************************************
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
2021-12-28 16:06:23 +08:00
2022-08-08 18:02:17 +08:00
https://axys1.github.io/
2021-12-28 16:06:23 +08:00
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
2021-12-28 16:06:23 +08:00
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
2021-12-28 16:06:23 +08:00
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
2021-12-28 16:06:23 +08:00
#define STRINGIFY(A) #A
2014-05-10 02:48:11 +08:00
static const char* starFlame = STRINGIFY(
2021-12-28 16:06:23 +08:00
uniform vec2 center; uniform vec2 resolution;
2014-05-10 02:48:11 +08:00
2021-12-28 16:06:23 +08:00
vec2 iResolution = resolution; // viewport resolution (in pixels)
2022-07-15 19:17:01 +08:00
float iGlobalTime = AX_Time[1]; // shader playback time (in seconds)
2021-12-28 16:06:23 +08:00
// uniform float iChannelTime[4]; // channel playback time (in seconds)
// uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)
vec4 iMouse = vec4(0, 0, 0, 0); // mouse pixel coords. xy: current (if MLB down), zw: click
// uniform sampler2D iChannel0; // input channel. XX = 2D/Cube
2014-05-10 02:48:11 +08:00
2021-12-28 16:06:23 +08:00
float noise(vec3 p) // Thx to Las^Mercury
{
vec3 i = floor(p);
vec4 a = dot(i, vec3(1., 57., 21.)) + vec4(0., 57., 21., 78.);
vec3 f = cos((p - i) * acos(-1.)) * (-.5) + .5;
a = mix(sin(cos(a) * a), sin(cos(1. + a) * (1. + a)), f.x);
a.xy = mix(a.xz, a.yw, f.y);
return mix(a.x, a.y, f.z);
}
2014-05-10 02:48:11 +08:00
2021-12-28 16:06:23 +08:00
float sphere(vec3 p, vec4 spr) { return length(spr.xyz - p) - spr.w; }
float flame(vec3 p) {
float d = sphere(p * vec3(1., .5, 1.), vec4(.0, -1., .0, 1.));
return d + (noise(p + vec3(.0, iGlobalTime * 2., .0)) + noise(p * 3.) * .5) * .25 * (p.y);
}
float scene(vec3 p) { return min(100. - length(p), abs(flame(p))); }
vec4 raymarch(vec3 org, vec3 dir) {
float d = 0.0;
float glow = 0.0;
float eps = 0.02;
vec3 p = org;
bool glowed = false;
for (int i = 0; i < 64; i++)
{
d = scene(p) + eps;
p += d * dir;
if (d > eps)
{
if (flame(p) < .0)
glowed = true;
if (glowed)
glow = float(i) / 64.;
}
}
return vec4(p, glow);
}
void main() {
vec2 v = -1.0 + (2.0 * gl_FragCoord.xy) / iResolution.xy;
// vec2 v = 2.0 * gl_FragCoord.xy / iResolution.xy;
v.x *= iResolution.x / iResolution.y;
vec3 org = vec3(0., -2., 4.);
vec3 dir = normalize(vec3(v.x * 1.6, -v.y, -1.5));
vec4 p = raymarch(org, dir);
float glow = p.w;
vec4 col = mix(vec4(1., .5, .1, 1.), vec4(0.1, .5, 1., 1.), p.y * .02 + .4);
gl_FragColor = mix(vec4(0.), col, pow(glow * 2., 4.));
// gl_FragColor = col;
// gl_FragColor = mix(vec4(1.), mix(vec4(1.,.5,.1,1.),vec4(0.1,.5,1.,1.),p.y*.02+.4), pow(glow*2.,4.));
}
2014-05-10 02:48:11 +08:00
);
2021-12-28 16:06:23 +08:00
static const char* starNestFrg = STRINGIFY(
uniform vec2 center; uniform vec2 resolution;
vec2 iCenter = center;
vec2 iResolution = resolution; // viewport resolution (in pixels)
2022-07-15 19:17:01 +08:00
float iGlobalTime = AX_Time[1]; // shader playback time (in seconds)
2021-12-28 16:06:23 +08:00
// uniform float iChannelTime[4]; // channel playback time (in seconds)
// uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)
vec4 iMouse = vec4(0, 0, 0, 0); // mouse pixel coords. xy: current (if MLB down), zw: click
// uniform sampler2D iChannel0; // input channel. XX = 2D/Cube
// Star Nest by Pablo Román Andrioli
// This content is under the MIT License.
int iterations = 17;
float formuparam = 0.53;
int volsteps = 20;
float stepsize = 0.1;
float zoom = 0.800;
float tile = 0.850;
float speed = 0.010;
float brightness = 0.0015;
float darkmatter = 0.300;
float distfading = 0.730;
float saturation = 0.850;
void main() {
// iCenter = vec2(300, 300);
// get coords and direction
vec2 uv = gl_FragCoord.xy / iResolution.xy - .5;
// vec2 uv=gl_FragCoord.xy/iResolution.xy ;
// vec2 uv = ( 2* gl_FragCoord.xy - iCenter.xy) / resolution.xy;
uv.y *= iResolution.y / iResolution.x;
// vec2 uv = 2.0* (gl_FragCoord.xy-iResolution.xy)/min(iResolution.y,iResolution.x);
vec3 dir = vec3(uv * zoom, 1.);
float time = iGlobalTime * speed + .25;
// mouse rotation
float a1 = .5 + iMouse.x / iResolution.x * 2.;
float a2 = .8 + iMouse.y / iResolution.y * 2.;
mat2 rot1 = mat2(cos(a1), sin(a1), -sin(a1), cos(a1));
mat2 rot2 = mat2(cos(a2), sin(a2), -sin(a2), cos(a2));
dir.xz *= rot1;
dir.xy *= rot2;
vec3 from = vec3(1., .5, 0.5);
from += vec3(time * 2., time, -2.);
from.xz *= rot1;
from.xy *= rot2;
// volumetric rendering
float s = 0.1;
float fade = 1.;
vec3 v = vec3(0.);
for (int r = 0; r < volsteps; r++)
{
vec3 p = from + s * dir * .5;
p = abs(vec3(tile) - mod(p, vec3(tile * 2.))); // tiling fold
float a = 0.;
float pa = 0.;
for (int i = 0; i < iterations; i++)
{
p = abs(p) / dot(p, p) - formuparam; // the magic formula
a += abs(length(p) - pa); // absolute sum of average change
pa = length(p);
}
float dm = max(0., darkmatter - a * a * .001); // dark matter
a *= a * a; // add contrast
if (r > 6)
fade *= 1. - dm; // dark matter, don't render near
// v+=vec3(dm,dm*.5,0.);
v += fade;
v += vec3(s, s * s, s * s * s * s) * a * brightness * fade; // coloring based on distance
fade *= distfading; // distance fading
s += stepsize;
}
v = mix(vec3(length(v)), v, saturation); // color adjust
gl_FragColor = vec4(v * .01, 1.);
});
2014-05-10 02:48:11 +08:00
static const char* shadertoyRelentlessFrag = STRINGIFY(
2021-12-28 16:06:23 +08:00
uniform vec2 center; uniform vec2 resolution;
vec2 iCenter = center;
vec2 iResolution = resolution; // viewport resolution (in pixels)
2022-07-15 19:17:01 +08:00
float iGlobalTime = AX_Time[1]; // shader playback time (in seconds)
2021-12-28 16:06:23 +08:00
// uniform float iChannelTime[4]; // channel playback time (in seconds)
// uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)
vec4 iMouse = vec4(0, 0, 0, 0); // mouse pixel coords. xy: current (if MLB down), zw: click
// uniform sampler2D iChannel0; // input channel. XX = 2D/Cube
// srtuss, 2013
// collecting some design ideas for a new game project.
// no raymarching is used.
// if i could add a custom soundtrack, it'd use this one (essential for desired sensation)
// http://www.youtube.com/watch?v=1uFAu65tZpo
//#define GREEN_VERSION
// ** improved camera shaking
// ** cleaned up code
// ** added stuff to the gates
float time = iGlobalTime;
vec2 rotate(vec2 p, float a) {
return vec2(p.x * cos(a) - p.y * sin(a), p.x * sin(a) + p.y * cos(a));
} float box(vec2 p, vec2 b, float r) { return length(max(abs(p) - b, 0.0)) - r; }
// iq's ray-plane-intersection code
vec3 intersect(in vec3 o, in vec3 d, vec3 c, vec3 u, vec3 v) {
vec3 q = o - c;
return vec3(dot(cross(u, v), q), dot(cross(q, u), d), dot(cross(v, q), d)) / dot(cross(v, u), d);
}
// some noise functions for fast developing
float rand11(float p) { return fract(sin(p * 591.32) * 43758.5357); }
float rand12(vec2 p) { return fract(sin(dot(p.xy, vec2(12.9898, 78.233))) * 43758.5357); }
vec2 rand21(float p) { return fract(vec2(sin(p * 591.32), cos(p * 391.32))); }
vec2 rand22(in vec2 p) { return fract(vec2(sin(p.x * 591.32 + p.y * 154.077), cos(p.x * 391.32 + p.y * 49.077))); }
float noise11(float p) {
float fl = floor(p);
return mix(rand11(fl), rand11(fl + 1.0), fract(p)); // smoothstep(0.0, 1.0, fract(p)));
}
float fbm11(float p) { return noise11(p) * 0.5 + noise11(p * 2.0) * 0.25 + noise11(p * 5.0) * 0.125; }
vec3 noise31(float p) { return vec3(noise11(p), noise11(p + 18.952), noise11(p - 11.372)) * 2.0 - 1.0; }
// something that looks a bit like godrays coming from the surface
float sky(vec3 p) {
float a = atan(p.x, p.z);
float t = time * 0.1;
float v =
rand11(floor(a * 4.0 + t)) * 0.5 + rand11(floor(a * 8.0 - t)) * 0.25 + rand11(floor(a * 16.0 + t)) * 0.125;
return v;
}
vec3 voronoi(in vec2 x) {
vec2 n = floor(x); // grid cell id
vec2 f = fract(x); // grid internal position
vec2 mg; // shortest distance...
vec2 mr; // ..and second shortest distance
float md = 8.0;
float md2 = 8.0;
for (int j = -1; j <= 1; j++)
{
for (int i = -1; i <= 1; i++)
{
vec2 g = vec2(float(i), float(j)); // cell id
vec2 o = rand22(n + g); // offset to edge point
vec2 r = g + o - f;
float d = max(abs(r.x), abs(r.y)); // distance to the edge
if (d < md)
{
md2 = md;
md = d;
mr = r;
mg = g;
}
else if (d < md2)
{
md2 = d;
}
}
}
return vec3(n + mg, md2 - md);
}
//#define A2V(a) vec2(sin((a) * 6.28318531 / 100.0), cos((a) * 6.28318531 / 100.0))
vec2 A2V(float a) { return vec2(sin((a)*6.28318531 / 100.0), cos((a)*6.28318531 / 100.0)); }
float circles(vec2 p) {
float v;
float w;
float l;
float c;
vec2 pp;
l = length(p);
pp = rotate(p, time * 3.0);
c = max(dot(pp, normalize(vec2(-0.2, 0.5))), -dot(pp, normalize(vec2(0.2, 0.5))));
c = min(c, max(dot(pp, normalize(vec2(0.5, -0.5))), -dot(pp, normalize(vec2(0.2, -0.5)))));
c = min(c, max(dot(pp, normalize(vec2(0.3, 0.5))), -dot(pp, normalize(vec2(0.2, 0.5)))));
// innerest stuff
v = abs(l - 0.5) - 0.03;
v = max(v, -c);
v = min(v, abs(l - 0.54) - 0.02);
v = min(v, abs(l - 0.64) - 0.05);
pp = rotate(p, time * -1.333);
c = max(dot(pp, A2V(-5.0)), -dot(pp, A2V(5.0)));
c = min(c, max(dot(pp, A2V(25.0 - 5.0)), -dot(pp, A2V(25.0 + 5.0))));
c = min(c, max(dot(pp, A2V(50.0 - 5.0)), -dot(pp, A2V(50.0 + 5.0))));
c = min(c, max(dot(pp, A2V(75.0 - 5.0)), -dot(pp, A2V(75.0 + 5.0))));
w = abs(l - 0.83) - 0.09;
v = min(v, max(w, c));
return v;
}
float shade1(float d) {
float v = 1.0 - smoothstep(0.0, mix(0.012, 0.2, 0.0), d);
float g = exp(d * -20.0);
return v + g * 0.5;
}
void main() {
vec2 uv = gl_FragCoord.xy / iResolution.xy;
uv = uv * 2.0 - 1.0;
uv.x *= iResolution.x / iResolution.y;
// using an iq styled camera this time :)
// ray origin
vec3 ro = 0.7 * vec3(cos(0.2 * time), 0.0, sin(0.2 * time));
ro.y = cos(0.6 * time) * 0.3 + 0.65;
// camera look at
vec3 ta = vec3(0.0, 0.2, 0.0);
// camera shake intensity
float shake = clamp(3.0 * (1.0 - length(ro.yz)), 0.3, 1.0);
float st = mod(time, 10.0) * 143.0;
// build camera matrix
vec3 ww = normalize(ta - ro + noise31(st) * shake * 0.01);
vec3 uu = normalize(cross(ww, normalize(vec3(0.0, 1.0, 0.2 * sin(time)))));
vec3 vv = normalize(cross(uu, ww));
// obtain ray direction
vec3 rd = normalize(uv.x * uu + uv.y * vv + 1.0 * ww);
// shaking and movement
ro += noise31(-st) * shake * 0.015;
ro.x += time * 2.0;
float inten = 0.0;
// background
float sd = dot(rd, vec3(0.0, 1.0, 0.0));
inten = pow(1.0 - abs(sd), 20.0) + pow(sky(rd), 5.0) * step(0.0, rd.y) * 0.2;
vec3 its;
float v;
float g;
// voronoi floor layers
for (int i = 0; i < 4; i++)
{
float layer = float(i);
its = intersect(ro, rd, vec3(0.0, -5.0 - layer * 5.0, 0.0), vec3(1.0, 0.0, 0.0), vec3(0.0, 0.0, 1.0));
if (its.x > 0.0)
{
vec3 vo = voronoi((its.yz) * 0.05 + 8.0 * rand21(float(i)));
v = exp(-100.0 * (vo.z - 0.02));
float fx = 0.0;
// add some special fx to lowest layer
if (i == 3)
{
float crd = 0.0; // fract(time * 0.2) * 50.0 - 25.0;
float fxi = cos(vo.x * 0.2 + time * 1.5); // abs(crd - vo.x);
fx = clamp(smoothstep(0.9, 1.0, fxi), 0.0, 0.9) * 1.0 * rand12(vo.xy);
fx *= exp(-3.0 * vo.z) * 2.0;
}
inten += v * 0.1 + fx;
}
}
// draw the gates, 4 should be enough
float gatex = floor(ro.x / 8.0 + 0.5) * 8.0 + 4.0;
float go = -16.0;
for (int i = 0; i < 4; i++)
{
its = intersect(ro, rd, vec3(gatex + go, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0));
if (dot(its.yz, its.yz) < 2.0 && its.x > 0.0)
{
v = circles(its.yz);
inten += shade1(v);
}
go += 8.0;
}
// draw the stream
for (int j = 0; j < 20; j++)
{
float id = float(j);
vec3 bp = vec3(0.0, (rand11(id) * 2.0 - 1.0) * 0.25, 0.0);
vec3 its = intersect(ro, rd, bp, vec3(1.0, 0.0, 0.0), vec3(0.0, 0.0, 1.0));
if (its.x > 0.0)
{
vec2 pp = its.yz;
float spd = (1.0 + rand11(id) * 3.0) * 2.5;
pp.y += time * spd;
pp += (rand21(id) * 2.0 - 1.0) * vec2(0.3, 1.0);
float rep = rand11(id) + 1.5;
pp.y = mod(pp.y, rep * 2.0) - rep;
float d = box(pp, vec2(0.02, 0.3), 0.1);
float foc = 0.0;
float v = 1.0 - smoothstep(0.0, 0.03, abs(d) - 0.001);
float g = min(exp(d * -20.0), 2.0);
inten += (v + g * 0.7) * 0.5;
}
}
inten *= 0.4 + (sin(time) * 0.5 + 0.5) * 0.6;
2014-05-10 02:48:11 +08:00
2021-12-28 16:06:23 +08:00
// find a color for the computed intensity
2014-05-10 02:48:11 +08:00
#ifdef GREEN_VERSION
2021-12-28 16:06:23 +08:00
vec3 col = pow(vec3(inten), vec3(2.0, 0.15, 9.0));
2014-05-10 02:48:11 +08:00
#else
2021-12-28 16:06:23 +08:00
vec3 col = pow(vec3(inten), 1.5 * vec3(0.15, 2.0, 9.0));
2014-05-10 02:48:11 +08:00
#endif
2021-12-28 16:06:23 +08:00
gl_FragColor = vec4(col, 1.0);
}
2014-05-10 02:48:11 +08:00
);