axmol/external/openal/alc/panning.cpp

1211 lines
48 KiB
C++
Raw Normal View History

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2010 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <functional>
#include <iterator>
#include <memory>
#include <new>
#include <numeric>
#include <string>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alconfig.h"
#include "alcontext.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "bformatdec.h"
#include "core/ambdec.h"
#include "core/ambidefs.h"
#include "core/bs2b.h"
#include "core/devformat.h"
#include "core/logging.h"
#include "core/uhjfilter.h"
#include "front_stablizer.h"
#include "hrtf.h"
#include "math_defs.h"
#include "opthelpers.h"
namespace {
using namespace std::placeholders;
using std::chrono::seconds;
using std::chrono::nanoseconds;
inline const char *GetLabelFromChannel(Channel channel)
{
switch(channel)
{
case FrontLeft: return "front-left";
case FrontRight: return "front-right";
case FrontCenter: return "front-center";
case LFE: return "lfe";
case BackLeft: return "back-left";
case BackRight: return "back-right";
case BackCenter: return "back-center";
case SideLeft: return "side-left";
case SideRight: return "side-right";
case TopFrontLeft: return "top-front-left";
case TopFrontCenter: return "top-front-center";
case TopFrontRight: return "top-front-right";
case TopCenter: return "top-center";
case TopBackLeft: return "top-back-left";
case TopBackCenter: return "top-back-center";
case TopBackRight: return "top-back-right";
case MaxChannels: break;
}
return "(unknown)";
}
std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const uint srate)
{
auto stablizer = FrontStablizer::Create(outchans);
for(auto &buf : stablizer->DelayBuf)
std::fill(buf.begin(), buf.end(), 0.0f);
/* Initialize band-splitting filter for the mid signal, with a crossover at
* 5khz (could be higher).
*/
stablizer->MidFilter.init(5000.0f / static_cast<float>(srate));
return stablizer;
}
void AllocChannels(ALCdevice *device, const size_t main_chans, const size_t real_chans)
{
TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans, real_chans);
/* Allocate extra channels for any post-filter output. */
const size_t num_chans{main_chans + real_chans};
TRACE("Allocating %zu channels, %zu bytes\n", num_chans,
num_chans*sizeof(device->MixBuffer[0]));
device->MixBuffer.resize(num_chans);
al::span<FloatBufferLine> buffer{device->MixBuffer};
device->Dry.Buffer = buffer.first(main_chans);
buffer = buffer.subspan(main_chans);
if(real_chans != 0)
{
device->RealOut.Buffer = buffer.first(real_chans);
buffer = buffer.subspan(real_chans);
}
else
device->RealOut.Buffer = device->Dry.Buffer;
}
struct ChannelMap {
Channel ChanName;
float Config[MaxAmbi2DChannels];
};
bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
auto map_spkr = [device](const AmbDecConf::SpeakerConf &speaker) -> uint
{
/* NOTE: AmbDec does not define any standard speaker names, however
* for this to work we have to by able to find the output channel
* the speaker definition corresponds to. Therefore, OpenAL Soft
* requires these channel labels to be recognized:
*
* LF = Front left
* RF = Front right
* LS = Side left
* RS = Side right
* LB = Back left
* RB = Back right
* CE = Front center
* CB = Back center
*
* Additionally, surround51 will acknowledge back speakers for side
* channels, and surround51rear will acknowledge side speakers for
* back channels, to avoid issues with an ambdec expecting 5.1 to
* use the side channels when the device is configured for back,
* and vice-versa.
*/
Channel ch{};
if(speaker.Name == "LF")
ch = FrontLeft;
else if(speaker.Name == "RF")
ch = FrontRight;
else if(speaker.Name == "CE")
ch = FrontCenter;
else if(speaker.Name == "LS")
{
if(device->FmtChans == DevFmtX51Rear)
ch = BackLeft;
else
ch = SideLeft;
}
else if(speaker.Name == "RS")
{
if(device->FmtChans == DevFmtX51Rear)
ch = BackRight;
else
ch = SideRight;
}
else if(speaker.Name == "LB")
{
if(device->FmtChans == DevFmtX51)
ch = SideLeft;
else
ch = BackLeft;
}
else if(speaker.Name == "RB")
{
if(device->FmtChans == DevFmtX51)
ch = SideRight;
else
ch = BackRight;
}
else if(speaker.Name == "CB")
ch = BackCenter;
else
{
ERR("AmbDec speaker label \"%s\" not recognized\n", speaker.Name.c_str());
return INVALID_CHANNEL_INDEX;
}
const uint chidx{GetChannelIdxByName(device->RealOut, ch)};
if(chidx == INVALID_CHANNEL_INDEX)
ERR("Failed to lookup AmbDec speaker label %s\n", speaker.Name.c_str());
return chidx;
};
std::transform(conf->Speakers.get(), conf->Speakers.get()+conf->NumSpeakers,
std::begin(speakermap), map_spkr);
/* Return success if no invalid entries are found. */
auto spkrmap_end = std::begin(speakermap) + conf->NumSpeakers;
return std::find(std::begin(speakermap), spkrmap_end, INVALID_CHANNEL_INDEX) == spkrmap_end;
}
void InitNearFieldCtrl(ALCdevice *device, float ctrl_dist, uint order, bool is3d)
{
static const uint chans_per_order2d[MaxAmbiOrder+1]{ 1, 2, 2, 2 };
static const uint chans_per_order3d[MaxAmbiOrder+1]{ 1, 3, 5, 7 };
/* NFC is only used when AvgSpeakerDist is greater than 0. */
const char *devname{device->DeviceName.c_str()};
if(!GetConfigValueBool(devname, "decoder", "nfc", 0) || !(ctrl_dist > 0.0f))
return;
device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f);
TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist);
auto iter = std::copy_n(is3d ? chans_per_order3d : chans_per_order2d, order+1u,
std::begin(device->NumChannelsPerOrder));
std::fill(iter, std::end(device->NumChannelsPerOrder), 0u);
}
void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf,
const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
auto get_max = std::bind(maxf, _1,
std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
const float maxdist{std::accumulate(conf->Speakers.get(),
conf->Speakers.get()+conf->NumSpeakers, 0.0f, get_max)};
const char *devname{device->DeviceName.c_str()};
if(!GetConfigValueBool(devname, "decoder", "distance-comp", 1) || !(maxdist > 0.0f))
return;
const auto distSampleScale = static_cast<float>(device->Frequency) / SpeedOfSoundMetersPerSec;
std::vector<DistanceComp::ChanData> ChanDelay;
size_t total{0u};
ChanDelay.reserve(conf->NumSpeakers + 1);
for(size_t i{0u};i < conf->NumSpeakers;i++)
{
const AmbDecConf::SpeakerConf &speaker = conf->Speakers[i];
const uint chan{speakermap[i]};
/* Distance compensation only delays in steps of the sample rate. This
* is a bit less accurate since the delay time falls to the nearest
* sample time, but it's far simpler as it doesn't have to deal with
* phase offsets. This means at 48khz, for instance, the distance delay
* will be in steps of about 7 millimeters.
*/
float delay{std::floor((maxdist - speaker.Distance)*distSampleScale + 0.5f)};
if(delay > float{MAX_DELAY_LENGTH-1})
{
ERR("Delay for speaker \"%s\" exceeds buffer length (%f > %d)\n",
speaker.Name.c_str(), delay, MAX_DELAY_LENGTH-1);
delay = float{MAX_DELAY_LENGTH-1};
}
ChanDelay.resize(maxz(ChanDelay.size(), chan+1));
ChanDelay[chan].Length = static_cast<uint>(delay);
ChanDelay[chan].Gain = speaker.Distance / maxdist;
TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan,
speaker.Name.c_str(), ChanDelay[chan].Length, ChanDelay[chan].Gain);
/* Round up to the next 4th sample, so each channel buffer starts
* 16-byte aligned.
*/
total += RoundUp(ChanDelay[chan].Length, 4);
}
if(total > 0)
{
auto chandelays = DistanceComp::Create(total);
std::copy(ChanDelay.cbegin(), ChanDelay.cend(), chandelays->mChannels.begin());
chandelays->mChannels[0].Buffer = chandelays->mSamples.data();
auto set_bufptr = [](const DistanceComp::ChanData &last, const DistanceComp::ChanData &cur)
-> DistanceComp::ChanData
{
DistanceComp::ChanData ret{cur};
ret.Buffer = last.Buffer + RoundUp(last.Length, 4);
return ret;
};
std::partial_sum(ChanDelay.begin(), ChanDelay.end(), ChanDelay.begin(), set_bufptr);
device->ChannelDelays = std::move(chandelays);
}
}
inline auto& GetAmbiScales(DevAmbiScaling scaletype) noexcept
{
if(scaletype == DevAmbiScaling::FuMa) return AmbiScale::FromFuMa();
if(scaletype == DevAmbiScaling::SN3D) return AmbiScale::FromSN3D();
return AmbiScale::FromN3D();
}
inline auto& GetAmbiLayout(DevAmbiLayout layouttype) noexcept
{
if(layouttype == DevAmbiLayout::FuMa) return AmbiIndex::FromFuMa();
return AmbiIndex::FromACN();
}
using ChannelCoeffs = std::array<float,MaxAmbi2DChannels>;
enum DecoderMode : bool {
SingleBand = false,
DualBand = true
};
template<DecoderMode Mode, size_t N>
struct DecoderConfig;
template<size_t N>
struct DecoderConfig<SingleBand, N> {
uint mOrder;
std::array<Channel,N> mChannels;
std::array<float,MaxAmbiOrder+1> mOrderGain;
std::array<ChannelCoeffs,N> mCoeffs;
};
template<size_t N>
struct DecoderConfig<DualBand, N> {
uint mOrder;
std::array<Channel,N> mChannels;
std::array<float,MaxAmbiOrder+1> mOrderGain;
std::array<ChannelCoeffs,N> mCoeffs;
std::array<float,MaxAmbiOrder+1> mOrderGainLF;
std::array<ChannelCoeffs,N> mCoeffsLF;
};
template<>
struct DecoderConfig<DualBand, 0> {
uint mOrder;
al::span<const Channel> mChannels;
al::span<const float> mOrderGain;
al::span<const ChannelCoeffs> mCoeffs;
al::span<const float> mOrderGainLF;
al::span<const ChannelCoeffs> mCoeffsLF;
template<size_t N>
DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept
{
mOrder = rhs.mOrder;
mChannels = rhs.mChannels;
mOrderGain = rhs.mOrderGain;
mCoeffs = rhs.mCoeffs;
mOrderGainLF = {};
mCoeffsLF = {};
return *this;
}
template<size_t N>
DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept
{
mOrder = rhs.mOrder;
mChannels = rhs.mChannels;
mOrderGain = rhs.mOrderGain;
mCoeffs = rhs.mCoeffs;
mOrderGainLF = rhs.mOrderGainLF;
mCoeffsLF = rhs.mCoeffsLF;
return *this;
}
};
using DecoderView = DecoderConfig<DualBand, 0>;
constexpr DecoderConfig<SingleBand, 1> MonoConfig{
0, {{FrontCenter}},
{{1.0f}},
{{ {{1.0f}} }}
};
constexpr DecoderConfig<SingleBand, 2> StereoConfig{
1, {{FrontLeft, FrontRight}},
{{1.0f, 1.0f}},
{{
{{5.00000000e-1f, 2.88675135e-1f, 5.52305643e-2f}},
{{5.00000000e-1f, -2.88675135e-1f, 5.52305643e-2f}},
}}
};
constexpr DecoderConfig<DualBand, 4> QuadConfig{
2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
/*HF*/{{1.15470054e+0f, 1.00000000e+0f, 5.77350269e-1f}},
{{
{{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
{{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
{{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
{{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
}},
/*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
{{
{{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
{{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
{{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
{{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
}}
};
constexpr DecoderConfig<SingleBand, 4> X51Config{
2, {{SideLeft, FrontLeft, FrontRight, SideRight}},
{{1.0f, 1.0f, 1.0f}},
{{
{{3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
{{1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f}},
{{1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f}},
{{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f}},
}}
};
constexpr DecoderConfig<SingleBand, 4> X51RearConfig{
2, {{BackLeft, FrontLeft, FrontRight, BackRight}},
{{1.0f, 1.0f, 1.0f}},
{{
{{3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
{{1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f}},
{{1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f}},
{{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f}},
}}
};
constexpr DecoderConfig<SingleBand, 5> X61Config{
2, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}},
{{1.0f, 1.0f, 1.0f}},
{{
{{2.04460341e-1f, 2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}},
{{1.58923161e-1f, 9.21772680e-2f, 1.59658796e-1f, 6.66278083e-2f, 3.84686854e-2f}},
{{1.58923161e-1f, -9.21772680e-2f, 1.59658796e-1f, -6.66278083e-2f, 3.84686854e-2f}},
{{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f, 2.60790269e-2f, -6.87239792e-2f}},
{{2.50001688e-1f, 0.00000000e+0f, -2.50000094e-1f, 0.00000000e+0f, 6.05133395e-2f}},
}}
};
constexpr DecoderConfig<DualBand, 6> X71Config{
3, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}},
/*HF*/{{1.22474487e+0f, 1.13151672e+0f, 8.66025404e-1f, 4.68689571e-1f}},
{{
{{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
}},
/*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
{{
{{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}},
{{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
}}
};
void InitPanning(ALCdevice *device, const bool hqdec=false, const bool stablize=false)
{
DecoderView decoder{};
switch(device->FmtChans)
{
case DevFmtMono:
decoder = MonoConfig;
break;
case DevFmtStereo:
decoder = StereoConfig;
break;
case DevFmtQuad:
decoder = QuadConfig;
break;
case DevFmtX51:
decoder = X51Config;
break;
case DevFmtX51Rear:
decoder = X51RearConfig;
break;
case DevFmtX61:
decoder = X61Config;
break;
case DevFmtX71:
decoder = X71Config;
break;
case DevFmtAmbi3D:
break;
}
if(device->FmtChans == DevFmtAmbi3D)
{
const char *devname{device->DeviceName.c_str()};
auto&& acnmap = GetAmbiLayout(device->mAmbiLayout);
auto&& n3dscale = GetAmbiScales(device->mAmbiScale);
/* For DevFmtAmbi3D, the ambisonic order is already set. */
const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap),
[&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig
{ return BFChannelConfig{1.0f/n3dscale[acn], acn}; }
);
AllocChannels(device, count, 0);
float nfc_delay{ConfigValueFloat(devname, "decoder", "nfc-ref-delay").value_or(0.0f)};
if(nfc_delay > 0.0f)
InitNearFieldCtrl(device, nfc_delay * SpeedOfSoundMetersPerSec, device->mAmbiOrder,
true);
}
else
{
const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()};
al::vector<ChannelDec> chancoeffs, chancoeffslf;
for(size_t i{0u};i < decoder.mChannels.size();++i)
{
const uint idx{GetChannelIdxByName(device->RealOut, decoder.mChannels[i])};
if(idx == INVALID_CHANNEL_INDEX)
{
ERR("Failed to find %s channel in device\n",
GetLabelFromChannel(decoder.mChannels[i]));
continue;
}
chancoeffs.resize(maxz(chancoeffs.size(), idx+1u), ChannelDec{});
al::span<float,MaxAmbiChannels> coeffs{chancoeffs[idx]};
size_t start{0};
for(uint o{0};o <= decoder.mOrder;++o)
{
size_t count{o ? 2u : 1u};
do {
coeffs[start] = decoder.mCoeffs[i][start] * decoder.mOrderGain[o];
++start;
} while(--count);
}
if(!dual_band)
continue;
chancoeffslf.resize(maxz(chancoeffslf.size(), idx+1u), ChannelDec{});
coeffs = chancoeffslf[idx];
start = 0;
for(uint o{0};o <= decoder.mOrder;++o)
{
size_t count{o ? 2u : 1u};
do {
coeffs[start] = decoder.mCoeffsLF[i][start] * decoder.mOrderGainLF[o];
++start;
} while(--count);
}
}
/* For non-DevFmtAmbi3D, set the ambisonic order. */
device->mAmbiOrder = decoder.mOrder;
/* Built-in speaker decoders are always 2D. */
const size_t ambicount{Ambi2DChannelsFromOrder(decoder.mOrder)};
std::transform(AmbiIndex::FromACN2D().begin(), AmbiIndex::FromACN2D().begin()+ambicount,
std::begin(device->Dry.AmbiMap),
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
);
AllocChannels(device, ambicount, device->channelsFromFmt());
std::unique_ptr<FrontStablizer> stablizer;
if(stablize)
{
/* Only enable the stablizer if the decoder does not output to the
* front-center channel.
*/
const auto cidx = device->RealOut.ChannelIndex[FrontCenter];
bool hasfc{false};
if(cidx < chancoeffs.size())
{
for(const auto &coeff : chancoeffs[cidx])
hasfc |= coeff != 0.0f;
}
if(!hasfc && cidx < chancoeffslf.size())
{
for(const auto &coeff : chancoeffslf[cidx])
hasfc |= coeff != 0.0f;
}
if(!hasfc)
{
stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
TRACE("Front stablizer enabled\n");
}
}
TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
!dual_band ? "single" : "dual",
(decoder.mOrder > 2) ? "third" :
(decoder.mOrder > 1) ? "second" : "first",
"");
device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf,
std::move(stablizer));
}
}
void InitCustomPanning(ALCdevice *device, const bool hqdec, const bool stablize,
const AmbDecConf *conf, const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
{
if(!hqdec && conf->FreqBands != 1)
ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
conf->XOverFreq);
device->mXOverFreq = conf->XOverFreq;
const uint order{(conf->ChanMask > Ambi2OrderMask) ? 3u :
(conf->ChanMask > Ambi1OrderMask) ? 2u : 1u};
device->mAmbiOrder = order;
size_t count;
if((conf->ChanMask&AmbiPeriphonicMask))
{
count = AmbiChannelsFromOrder(order);
std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count,
std::begin(device->Dry.AmbiMap),
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
);
}
else
{
count = Ambi2DChannelsFromOrder(order);
std::transform(AmbiIndex::FromACN2D().begin(), AmbiIndex::FromACN2D().begin()+count,
std::begin(device->Dry.AmbiMap),
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
);
}
AllocChannels(device, count, device->channelsFromFmt());
std::unique_ptr<FrontStablizer> stablizer;
if(stablize)
{
/* Only enable the stablizer if the decoder does not output to the
* front-center channel.
*/
size_t cidx{0};
for(;cidx < conf->NumSpeakers;++cidx)
{
if(speakermap[cidx] == FrontCenter)
break;
}
bool hasfc{false};
if(cidx < conf->NumSpeakers && conf->FreqBands != 1)
{
for(const auto &coeff : conf->LFMatrix[cidx])
hasfc |= coeff != 0.0f;
}
if(!hasfc && cidx < conf->NumSpeakers)
{
for(const auto &coeff : conf->HFMatrix[cidx])
hasfc |= coeff != 0.0f;
}
if(!hasfc)
{
stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
TRACE("Front stablizer enabled\n");
}
}
TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
(!hqdec || conf->FreqBands == 1) ? "single" : "dual",
(conf->ChanMask > Ambi2OrderMask) ? "third" :
(conf->ChanMask > Ambi1OrderMask) ? "second" : "first",
(conf->ChanMask&AmbiPeriphonicMask) ? " periphonic" : ""
);
device->AmbiDecoder = BFormatDec::Create(conf, hqdec, count, device->Frequency, speakermap,
std::move(stablizer));
auto accum_spkr_dist = std::bind(std::plus<float>{}, _1,
std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
const float accum_dist{std::accumulate(conf->Speakers.get(),
conf->Speakers.get()+conf->NumSpeakers, 0.0f, accum_spkr_dist)};
InitNearFieldCtrl(device, accum_dist / static_cast<float>(conf->NumSpeakers), order,
!!(conf->ChanMask&AmbiPeriphonicMask));
InitDistanceComp(device, conf, speakermap);
}
void InitHrtfPanning(ALCdevice *device)
{
constexpr float Deg180{al::MathDefs<float>::Pi()};
constexpr float Deg_90{Deg180 / 2.0f /* 90 degrees*/};
constexpr float Deg_45{Deg_90 / 2.0f /* 45 degrees*/};
constexpr float Deg135{Deg_45 * 3.0f /*135 degrees*/};
constexpr float Deg_35{6.154797086e-01f /* 35~ 36 degrees*/};
constexpr float Deg_69{1.205932499e+00f /* 69~ 70 degrees*/};
constexpr float Deg111{1.935660155e+00f /*110~111 degrees*/};
constexpr float Deg_21{3.648638281e-01f /* 20~ 21 degrees*/};
static const AngularPoint AmbiPoints1O[]{
{ EvRadians{ Deg_35}, AzRadians{-Deg_45} },
{ EvRadians{ Deg_35}, AzRadians{-Deg135} },
{ EvRadians{ Deg_35}, AzRadians{ Deg_45} },
{ EvRadians{ Deg_35}, AzRadians{ Deg135} },
{ EvRadians{-Deg_35}, AzRadians{-Deg_45} },
{ EvRadians{-Deg_35}, AzRadians{-Deg135} },
{ EvRadians{-Deg_35}, AzRadians{ Deg_45} },
{ EvRadians{-Deg_35}, AzRadians{ Deg135} },
}, AmbiPoints2O[]{
{ EvRadians{-Deg_35}, AzRadians{-Deg_45} },
{ EvRadians{-Deg_35}, AzRadians{-Deg135} },
{ EvRadians{ Deg_35}, AzRadians{-Deg135} },
{ EvRadians{ Deg_35}, AzRadians{ Deg135} },
{ EvRadians{ Deg_35}, AzRadians{ Deg_45} },
{ EvRadians{-Deg_35}, AzRadians{ Deg_45} },
{ EvRadians{-Deg_35}, AzRadians{ Deg135} },
{ EvRadians{ Deg_35}, AzRadians{-Deg_45} },
{ EvRadians{-Deg_69}, AzRadians{-Deg_90} },
{ EvRadians{ Deg_69}, AzRadians{ Deg_90} },
{ EvRadians{-Deg_69}, AzRadians{ Deg_90} },
{ EvRadians{ Deg_69}, AzRadians{-Deg_90} },
{ EvRadians{ 0.0f}, AzRadians{-Deg_69} },
{ EvRadians{ 0.0f}, AzRadians{-Deg111} },
{ EvRadians{ 0.0f}, AzRadians{ Deg_69} },
{ EvRadians{ 0.0f}, AzRadians{ Deg111} },
{ EvRadians{-Deg_21}, AzRadians{ Deg180} },
{ EvRadians{ Deg_21}, AzRadians{ Deg180} },
{ EvRadians{ Deg_21}, AzRadians{ 0.0f} },
{ EvRadians{-Deg_21}, AzRadians{ 0.0f} },
};
static const float AmbiMatrix1O[][MaxAmbiChannels]{
{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f },
{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f },
{ 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f },
{ 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f },
{ 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f },
{ 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
{ 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f },
{ 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
}, AmbiMatrix2O[][MaxAmbiChannels]{
{ 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
{ 5.000000000e-02f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
{ 5.000000000e-02f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
{ 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
{ 5.000000000e-02f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
{ 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
{ 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
{ 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
{ 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
{ 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f },
{ 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f },
{ 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f },
{ 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f },
};
static const float AmbiOrderHFGain1O[MaxAmbiOrder+1]{
2.000000000e+00f, 1.154700538e+00f
}, AmbiOrderHFGain2O[MaxAmbiOrder+1]{
2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f
};
static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch");
static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch");
/* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
* and it eases the CPU/memory load.
*/
device->mRenderMode = RenderMode::Hrtf;
uint ambi_order{1};
if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf-mode"))
{
struct HrtfModeEntry {
char name[8];
RenderMode mode;
uint order;
};
static const HrtfModeEntry hrtf_modes[]{
{ "full", RenderMode::Hrtf, 1 },
{ "ambi1", RenderMode::Normal, 1 },
{ "ambi2", RenderMode::Normal, 2 },
};
const char *mode{modeopt->c_str()};
if(al::strcasecmp(mode, "basic") == 0 || al::strcasecmp(mode, "ambi3") == 0)
{
ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2");
mode = "ambi2";
}
auto match_entry = [mode](const HrtfModeEntry &entry) -> bool
{ return al::strcasecmp(mode, entry.name) == 0; };
auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry);
if(iter == std::end(hrtf_modes))
ERR("Unexpected hrtf-mode: %s\n", mode);
else
{
device->mRenderMode = iter->mode;
ambi_order = iter->order;
}
}
TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order,
(((ambi_order%100)/10) == 1) ? "th" :
((ambi_order%10) == 1) ? "st" :
((ambi_order%10) == 2) ? "nd" :
((ambi_order%10) == 3) ? "rd" : "th",
(device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "",
device->HrtfName.c_str());
al::span<const AngularPoint> AmbiPoints{AmbiPoints1O};
const float (*AmbiMatrix)[MaxAmbiChannels]{AmbiMatrix1O};
al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain{AmbiOrderHFGain1O};
if(ambi_order >= 2)
{
AmbiPoints = AmbiPoints2O;
AmbiMatrix = AmbiMatrix2O;
AmbiOrderHFGain = AmbiOrderHFGain2O;
}
device->mAmbiOrder = ambi_order;
const size_t count{AmbiChannelsFromOrder(ambi_order)};
std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count,
std::begin(device->Dry.AmbiMap),
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
);
AllocChannels(device, count, device->channelsFromFmt());
HrtfStore *Hrtf{device->mHrtf.get()};
auto hrtfstate = DirectHrtfState::Create(count);
hrtfstate->build(Hrtf, device->mIrSize, AmbiPoints, AmbiMatrix, device->mXOverFreq,
AmbiOrderHFGain);
device->mHrtfState = std::move(hrtfstate);
InitNearFieldCtrl(device, Hrtf->field[0].distance, ambi_order, true);
}
void InitUhjPanning(ALCdevice *device)
{
/* UHJ is always 2D first-order. */
constexpr size_t count{Ambi2DChannelsFromOrder(1)};
device->mAmbiOrder = 1;
auto acnmap_begin = AmbiIndex::FromFuMa().begin();
std::transform(acnmap_begin, acnmap_begin + count, std::begin(device->Dry.AmbiMap),
[](const uint8_t &acn) noexcept -> BFChannelConfig
{ return BFChannelConfig{1.0f/AmbiScale::FromFuMa()[acn], acn}; });
AllocChannels(device, count, device->channelsFromFmt());
}
} // namespace
void aluInitRenderer(ALCdevice *device, int hrtf_id, HrtfRequestMode hrtf_appreq,
HrtfRequestMode hrtf_userreq)
{
const char *devname{device->DeviceName.c_str()};
/* Hold the HRTF the device last used, in case it's used again. */
HrtfStorePtr old_hrtf{std::move(device->mHrtf)};
device->mHrtfState = nullptr;
device->mHrtf = nullptr;
device->mIrSize = 0;
device->HrtfName.clear();
device->mXOverFreq = 400.0f;
device->mRenderMode = RenderMode::Normal;
if(device->FmtChans != DevFmtStereo)
{
old_hrtf = nullptr;
if(hrtf_appreq == Hrtf_Enable)
device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
const char *layout{nullptr};
switch(device->FmtChans)
{
case DevFmtQuad: layout = "quad"; break;
case DevFmtX51: /* fall-through */
case DevFmtX51Rear: layout = "surround51"; break;
case DevFmtX61: layout = "surround61"; break;
case DevFmtX71: layout = "surround71"; break;
/* Mono, Stereo, and Ambisonics output don't use custom decoders. */
case DevFmtMono:
case DevFmtStereo:
case DevFmtAmbi3D:
break;
}
uint speakermap[MAX_OUTPUT_CHANNELS];
AmbDecConf *pconf{nullptr};
AmbDecConf conf{};
if(layout)
{
if(auto decopt = ConfigValueStr(devname, "decoder", layout))
{
if(auto err = conf.load(decopt->c_str()))
{
ERR("Failed to load layout file %s\n", decopt->c_str());
ERR(" %s\n", err->c_str());
}
else if(conf.NumSpeakers > MAX_OUTPUT_CHANNELS)
ERR("Unsupported decoder speaker count %zu (max %d)\n", conf.NumSpeakers,
MAX_OUTPUT_CHANNELS);
else if(conf.ChanMask > Ambi3OrderMask)
ERR("Unsupported decoder channel mask 0x%04x (max 0x%x)\n", conf.ChanMask,
Ambi3OrderMask);
else if(MakeSpeakerMap(device, &conf, speakermap))
pconf = &conf;
}
}
/* Enable the stablizer only for formats that have front-left, front-
* right, and front-center outputs.
*/
const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != INVALID_CHANNEL_INDEX
&& device->RealOut.ChannelIndex[FrontLeft] != INVALID_CHANNEL_INDEX
&& device->RealOut.ChannelIndex[FrontRight] != INVALID_CHANNEL_INDEX
&& GetConfigValueBool(devname, nullptr, "front-stablizer", 0) != 0};
const bool hqdec{GetConfigValueBool(devname, "decoder", "hq-mode", 1) != 0};
if(!pconf)
InitPanning(device, hqdec, stablize);
else
InitCustomPanning(device, hqdec, stablize, pconf, speakermap);
if(auto *ambidec{device->AmbiDecoder.get()})
{
device->PostProcess = ambidec->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized
: &ALCdevice::ProcessAmbiDec;
}
return;
}
bool headphones{device->IsHeadphones};
if(device->Type != DeviceType::Loopback)
{
if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-mode"))
{
const char *mode{modeopt->c_str()};
if(al::strcasecmp(mode, "headphones") == 0)
headphones = true;
else if(al::strcasecmp(mode, "speakers") == 0)
headphones = false;
else if(al::strcasecmp(mode, "auto") != 0)
ERR("Unexpected stereo-mode: %s\n", mode);
}
}
if(hrtf_userreq == Hrtf_Default)
{
bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) ||
(hrtf_appreq == Hrtf_Enable);
if(!usehrtf) goto no_hrtf;
device->HrtfStatus = ALC_HRTF_ENABLED_SOFT;
if(headphones && hrtf_appreq != Hrtf_Disable)
device->HrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT;
}
else
{
if(hrtf_userreq != Hrtf_Enable)
{
if(hrtf_appreq == Hrtf_Enable)
device->HrtfStatus = ALC_HRTF_DENIED_SOFT;
goto no_hrtf;
}
device->HrtfStatus = ALC_HRTF_REQUIRED_SOFT;
}
if(device->HrtfList.empty())
device->HrtfList = EnumerateHrtf(device->DeviceName.c_str());
if(hrtf_id >= 0 && static_cast<uint>(hrtf_id) < device->HrtfList.size())
{
const std::string &hrtfname = device->HrtfList[static_cast<uint>(hrtf_id)];
if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
{
device->mHrtf = std::move(hrtf);
device->HrtfName = hrtfname;
}
}
if(!device->mHrtf)
{
for(const auto &hrtfname : device->HrtfList)
{
if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
{
device->mHrtf = std::move(hrtf);
device->HrtfName = hrtfname;
break;
}
}
}
if(device->mHrtf)
{
old_hrtf = nullptr;
HrtfStore *hrtf{device->mHrtf.get()};
device->mIrSize = hrtf->irSize;
if(auto hrtfsizeopt = ConfigValueUInt(devname, nullptr, "hrtf-size"))
{
if(*hrtfsizeopt > 0 && *hrtfsizeopt < device->mIrSize)
device->mIrSize = maxu(*hrtfsizeopt, MinIrLength);
}
InitHrtfPanning(device);
device->PostProcess = &ALCdevice::ProcessHrtf;
return;
}
device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
no_hrtf:
old_hrtf = nullptr;
device->mRenderMode = RenderMode::Pairwise;
if(device->Type != DeviceType::Loopback)
{
if(auto cflevopt = ConfigValueInt(device->DeviceName.c_str(), nullptr, "cf_level"))
{
if(*cflevopt > 0 && *cflevopt <= 6)
{
device->Bs2b = std::make_unique<bs2b>();
bs2b_set_params(device->Bs2b.get(), *cflevopt,
static_cast<int>(device->Frequency));
TRACE("BS2B enabled\n");
InitPanning(device);
device->PostProcess = &ALCdevice::ProcessBs2b;
return;
}
}
}
if(auto encopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-encoding"))
{
const char *mode{encopt->c_str()};
if(al::strcasecmp(mode, "uhj") == 0)
device->mRenderMode = RenderMode::Normal;
else if(al::strcasecmp(mode, "panpot") != 0)
ERR("Unexpected stereo-encoding: %s\n", mode);
}
if(device->mRenderMode == RenderMode::Normal)
{
device->Uhj_Encoder = std::make_unique<Uhj2Encoder>();
TRACE("UHJ enabled\n");
InitUhjPanning(device);
device->PostProcess = &ALCdevice::ProcessUhj;
return;
}
TRACE("Stereo rendering\n");
InitPanning(device);
device->PostProcess = &ALCdevice::ProcessAmbiDec;
}
void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context)
{
ALCdevice *device{context->mDevice.get()};
const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
auto wetbuffer_iter = context->mWetBuffers.end();
if(slot->mWetBuffer)
{
/* If the effect slot already has a wet buffer attached, allocate a new
* one in its place.
*/
wetbuffer_iter = context->mWetBuffers.begin();
for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
{
if(wetbuffer_iter->get() == slot->mWetBuffer)
{
slot->mWetBuffer = nullptr;
slot->Wet.Buffer = {};
*wetbuffer_iter = WetBufferPtr{new(FamCount(count)) WetBuffer{count}};
break;
}
}
}
if(wetbuffer_iter == context->mWetBuffers.end())
{
/* Otherwise, search for an unused wet buffer. */
wetbuffer_iter = context->mWetBuffers.begin();
for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
{
if(!(*wetbuffer_iter)->mInUse)
break;
}
if(wetbuffer_iter == context->mWetBuffers.end())
{
/* Otherwise, allocate a new one to use. */
context->mWetBuffers.emplace_back(WetBufferPtr{new(FamCount(count)) WetBuffer{count}});
wetbuffer_iter = context->mWetBuffers.end()-1;
}
}
WetBuffer *wetbuffer{slot->mWetBuffer = wetbuffer_iter->get()};
wetbuffer->mInUse = true;
auto acnmap_begin = AmbiIndex::FromACN().begin();
auto iter = std::transform(acnmap_begin, acnmap_begin + count, slot->Wet.AmbiMap.begin(),
[](const uint8_t &acn) noexcept -> BFChannelConfig
{ return BFChannelConfig{1.0f, acn}; });
std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{});
slot->Wet.Buffer = wetbuffer->mBuffer;
}
std::array<float,MaxAmbiChannels> CalcAmbiCoeffs(const float y, const float z, const float x,
const float spread)
{
std::array<float,MaxAmbiChannels> coeffs;
/* Zeroth-order */
coeffs[0] = 1.0f; /* ACN 0 = 1 */
/* First-order */
coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
/* Second-order */
const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z};
coeffs[4] = 3.872983346f * xy; /* ACN 4 = sqrt(15) * X * Y */
coeffs[5] = 3.872983346f * yz; /* ACN 5 = sqrt(15) * Y * Z */
coeffs[6] = 1.118033989f * (3.0f*zz - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
coeffs[7] = 3.872983346f * xz; /* ACN 7 = sqrt(15) * X * Z */
coeffs[8] = 1.936491673f * (xx - yy); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
/* Third-order */
coeffs[9] = 2.091650066f * (y*(3.0f*xx - yy)); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
coeffs[10] = 10.246950766f * (z*xy); /* ACN 10 = sqrt(105) * Z * X * Y */
coeffs[11] = 1.620185175f * (y*(5.0f*zz - 1.0f)); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
coeffs[12] = 1.322875656f * (z*(5.0f*zz - 3.0f)); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
coeffs[13] = 1.620185175f * (x*(5.0f*zz - 1.0f)); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
coeffs[14] = 5.123475383f * (z*(xx - yy)); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
coeffs[15] = 2.091650066f * (x*(xx - 3.0f*yy)); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
/* Fourth-order */
/* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */
/* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */
/* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */
/* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */
/* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */
/* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */
/* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */
/* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */
/* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */
if(spread > 0.0f)
{
/* Implement the spread by using a spherical source that subtends the
* angle spread. See:
* http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3
*
* When adjusted for N3D normalization instead of SN3D, these
* calculations are:
*
* ZH0 = -sqrt(pi) * (-1+ca);
* ZH1 = 0.5*sqrt(pi) * sa*sa;
* ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1);
* ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1);
* ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3);
* ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1);
*
* The gain of the source is compensated for size, so that the
* loudness doesn't depend on the spread. Thus:
*
* ZH0 = 1.0f;
* ZH1 = 0.5f * (ca+1.0f);
* ZH2 = 0.5f * (ca+1.0f)*ca;
* ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f);
* ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca;
* ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f);
*/
const float ca{std::cos(spread * 0.5f)};
/* Increase the source volume by up to +3dB for a full spread. */
const float scale{std::sqrt(1.0f + spread/al::MathDefs<float>::Tau())};
const float ZH0_norm{scale};
const float ZH1_norm{scale * 0.5f * (ca+1.f)};
const float ZH2_norm{scale * 0.5f * (ca+1.f)*ca};
const float ZH3_norm{scale * 0.125f * (ca+1.f)*(5.f*ca*ca-1.f)};
/* Zeroth-order */
coeffs[0] *= ZH0_norm;
/* First-order */
coeffs[1] *= ZH1_norm;
coeffs[2] *= ZH1_norm;
coeffs[3] *= ZH1_norm;
/* Second-order */
coeffs[4] *= ZH2_norm;
coeffs[5] *= ZH2_norm;
coeffs[6] *= ZH2_norm;
coeffs[7] *= ZH2_norm;
coeffs[8] *= ZH2_norm;
/* Third-order */
coeffs[9] *= ZH3_norm;
coeffs[10] *= ZH3_norm;
coeffs[11] *= ZH3_norm;
coeffs[12] *= ZH3_norm;
coeffs[13] *= ZH3_norm;
coeffs[14] *= ZH3_norm;
coeffs[15] *= ZH3_norm;
}
return coeffs;
}
void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain,
const al::span<float,MAX_OUTPUT_CHANNELS> gains)
{
auto ambimap = mix->AmbiMap.cbegin();
auto iter = std::transform(ambimap, ambimap+mix->Buffer.size(), gains.begin(),
[coeffs,ingain](const BFChannelConfig &chanmap) noexcept -> float
{ return chanmap.Scale * coeffs[chanmap.Index] * ingain; }
);
std::fill(iter, gains.end(), 0.0f);
}