axmol/external/openal/core/mixer/hrtfbase.h

160 lines
5.8 KiB
C
Raw Normal View History

#ifndef CORE_MIXER_HRTFBASE_H
#define CORE_MIXER_HRTFBASE_H
#include <algorithm>
#include <cmath>
#include "almalloc.h"
#include "hrtfdefs.h"
#include "opthelpers.h"
using uint = unsigned int;
using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const size_t irSize,
const HrirArray &Coeffs, const float left, const float right);
template<ApplyCoeffsT ApplyCoeffs>
inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const size_t IrSize,
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
{
ASSUME(BufferSize > 0);
const HrirArray &Coeffs = *hrtfparams->Coeffs;
const float gainstep{hrtfparams->GainStep};
const float gain{hrtfparams->Gain};
size_t ldelay{HrtfHistoryLength - hrtfparams->Delay[0]};
size_t rdelay{HrtfHistoryLength - hrtfparams->Delay[1]};
float stepcount{0.0f};
for(size_t i{0u};i < BufferSize;++i)
{
const float g{gain + gainstep*stepcount};
const float left{InSamples[ldelay++] * g};
const float right{InSamples[rdelay++] * g};
ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right);
stepcount += 1.0f;
}
}
template<ApplyCoeffsT ApplyCoeffs>
inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples,
const size_t IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
const size_t BufferSize)
{
ASSUME(BufferSize > 0);
const auto &OldCoeffs = oldparams->Coeffs;
const float oldGainStep{oldparams->Gain / static_cast<float>(BufferSize)};
const auto &NewCoeffs = *newparams->Coeffs;
const float newGainStep{newparams->GainStep};
if LIKELY(oldparams->Gain > GainSilenceThreshold)
{
size_t ldelay{HrtfHistoryLength - oldparams->Delay[0]};
size_t rdelay{HrtfHistoryLength - oldparams->Delay[1]};
auto stepcount = static_cast<float>(BufferSize);
for(size_t i{0u};i < BufferSize;++i)
{
const float g{oldGainStep*stepcount};
const float left{InSamples[ldelay++] * g};
const float right{InSamples[rdelay++] * g};
ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right);
stepcount -= 1.0f;
}
}
if LIKELY(newGainStep*static_cast<float>(BufferSize) > GainSilenceThreshold)
{
size_t ldelay{HrtfHistoryLength+1 - newparams->Delay[0]};
size_t rdelay{HrtfHistoryLength+1 - newparams->Delay[1]};
float stepcount{1.0f};
for(size_t i{1u};i < BufferSize;++i)
{
const float g{newGainStep*stepcount};
const float left{InSamples[ldelay++] * g};
const float right{InSamples[rdelay++] * g};
ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right);
stepcount += 1.0f;
}
}
}
template<ApplyCoeffsT ApplyCoeffs>
inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples,
float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
{
ASSUME(BufferSize > 0);
/* Add the existing signal directly to the accumulation buffer, unfiltered,
* and with a delay to align with the input delay.
*/
for(size_t i{0};i < BufferSize;++i)
{
AccumSamples[HrtfDirectDelay+i][0] += LeftOut[i];
AccumSamples[HrtfDirectDelay+i][1] += RightOut[i];
}
for(const FloatBufferLine &input : InSamples)
{
/* For dual-band processing, the signal needs extra scaling applied to
* the high frequency response. The band-splitter alone creates a
* frequency-dependent phase shift, which is not ideal. To counteract
* it, combine it with a backwards phase shift.
*/
/* Load the input signal backwards, into a temp buffer with delay
* padding. The delay serves to reduce the error caused by the IIR
* filter's phase shift on a partial input.
*/
al::span<float> tempbuf{al::assume_aligned<16>(TempBuf), HrtfDirectDelay+BufferSize};
auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin());
std::copy(ChanState->mDelay.cbegin(), ChanState->mDelay.cend(), tmpiter);
/* Save the unfiltered newest input samples for next time. */
std::copy_n(tempbuf.begin(), ChanState->mDelay.size(), ChanState->mDelay.begin());
/* Apply the all-pass on the reversed signal and reverse the resulting
* sample array. This produces the forward response with a backwards
* phase shift (+n degrees becomes -n degrees).
*/
ChanState->mSplitter.applyAllpass(tempbuf);
tempbuf = tempbuf.subspan<HrtfDirectDelay>();
std::reverse(tempbuf.begin(), tempbuf.end());
/* Now apply the HF scale with the band-splitter. This applies the
* forward phase shift, which cancels out with the backwards phase
* shift to get the original phase on the scaled signal.
*/
ChanState->mSplitter.processHfScale(tempbuf, ChanState->mHfScale);
/* Now apply the HRIR coefficients to this channel. */
const auto &Coeffs = ChanState->mCoeffs;
for(size_t i{0u};i < BufferSize;++i)
{
const float insample{tempbuf[i]};
ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample);
}
++ChanState;
}
for(size_t i{0u};i < BufferSize;++i)
LeftOut[i] = AccumSamples[i][0];
for(size_t i{0u};i < BufferSize;++i)
RightOut[i] = AccumSamples[i][1];
/* Copy the new in-progress accumulation values to the front and clear the
* following samples for the next mix.
*/
auto accum_iter = std::copy_n(AccumSamples+BufferSize, HrirLength+HrtfDirectDelay,
AccumSamples);
std::fill_n(accum_iter, BufferSize, float2{});
}
#endif /* CORE_MIXER_HRTFBASE_H */