axmol/chipmunk/src/cpCollision.c

392 lines
11 KiB
C
Raw Normal View History

2010-09-04 18:18:14 +08:00
/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include "chipmunk.h"
typedef int (*collisionFunc)(cpShape *, cpShape *, cpContact *);
// Add contact points for circle to circle collisions.
// Used by several collision tests.
static int
circle2circleQuery(cpVect p1, cpVect p2, cpFloat r1, cpFloat r2, cpContact *con)
{
cpFloat mindist = r1 + r2;
cpVect delta = cpvsub(p2, p1);
cpFloat distsq = cpvlengthsq(delta);
if(distsq >= mindist*mindist) return 0;
cpFloat dist = cpfsqrt(distsq);
// To avoid singularities, do nothing in the case of dist = 0.
cpFloat non_zero_dist = (dist ? dist : INFINITY);
// Allocate and initialize the contact.
cpContactInit(
con,
cpvadd(p1, cpvmult(delta, 0.5f + (r1 - 0.5f*mindist)/non_zero_dist)),
cpvmult(delta, 1.0f/non_zero_dist),
dist - mindist,
0
);
return 1;
}
// Collide circle shapes.
static int
circle2circle(cpShape *shape1, cpShape *shape2, cpContact *arr)
{
cpCircleShape *circ1 = (cpCircleShape *)shape1;
cpCircleShape *circ2 = (cpCircleShape *)shape2;
return circle2circleQuery(circ1->tc, circ2->tc, circ1->r, circ2->r, arr);
}
// Collide circles to segment shapes.
static int
circle2segment(cpShape *circleShape, cpShape *segmentShape, cpContact *con)
{
cpCircleShape *circ = (cpCircleShape *)circleShape;
cpSegmentShape *seg = (cpSegmentShape *)segmentShape;
// Radius sum
cpFloat rsum = circ->r + seg->r;
// Calculate normal distance from segment.
cpFloat dn = cpvdot(seg->tn, circ->tc) - cpvdot(seg->ta, seg->tn);
cpFloat dist = cpfabs(dn) - rsum;
if(dist > 0.0f) return 0;
// Calculate tangential distance along segment.
cpFloat dt = -cpvcross(seg->tn, circ->tc);
cpFloat dtMin = -cpvcross(seg->tn, seg->ta);
cpFloat dtMax = -cpvcross(seg->tn, seg->tb);
// Decision tree to decide which feature of the segment to collide with.
if(dt < dtMin){
if(dt < (dtMin - rsum)){
return 0;
} else {
return circle2circleQuery(circ->tc, seg->ta, circ->r, seg->r, con);
}
} else {
if(dt < dtMax){
cpVect n = (dn < 0.0f) ? seg->tn : cpvneg(seg->tn);
cpContactInit(
con,
cpvadd(circ->tc, cpvmult(n, circ->r + dist*0.5f)),
n,
dist,
0
);
return 1;
} else {
if(dt < (dtMax + rsum)) {
return circle2circleQuery(circ->tc, seg->tb, circ->r, seg->r, con);
} else {
return 0;
}
}
}
return 1;
}
// Helper function for working with contact buffers
// This used to malloc/realloc memory on the fly but was repurposed.
static cpContact *
nextContactPoint(cpContact *arr, int *numPtr)
{
int num = *numPtr;
if(num <= CP_MAX_CONTACTS_PER_ARBITER)
(*numPtr) = num + 1;
return &arr[num];
}
// Find the minimum separating axis for the give poly and axis list.
static inline int
findMSA(cpPolyShape *poly, cpPolyShapeAxis *axes, int num, cpFloat *min_out)
{
int min_index = 0;
cpFloat min = cpPolyShapeValueOnAxis(poly, axes->n, axes->d);
if(min > 0.0f) return -1;
for(int i=1; i<num; i++){
cpFloat dist = cpPolyShapeValueOnAxis(poly, axes[i].n, axes[i].d);
if(dist > 0.0f) {
return -1;
} else if(dist > min){
min = dist;
min_index = i;
}
}
(*min_out) = min;
return min_index;
}
// Add contacts for penetrating vertexes.
static inline int
findVerts(cpContact *arr, cpPolyShape *poly1, cpPolyShape *poly2, cpVect n, cpFloat dist)
{
int num = 0;
for(int i=0; i<poly1->numVerts; i++){
cpVect v = poly1->tVerts[i];
if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n)))
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
}
for(int i=0; i<poly2->numVerts; i++){
cpVect v = poly2->tVerts[i];
if(cpPolyShapeContainsVertPartial(poly1, v, n))
cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
}
// if(!num)
// addContactPoint(arr, &size, &num, cpContactNew(shape1->body->p, n, dist, 0));
return num;
}
// Collide poly shapes together.
static int
poly2poly(cpShape *shape1, cpShape *shape2, cpContact *arr)
{
cpPolyShape *poly1 = (cpPolyShape *)shape1;
cpPolyShape *poly2 = (cpPolyShape *)shape2;
cpFloat min1;
int mini1 = findMSA(poly2, poly1->tAxes, poly1->numVerts, &min1);
if(mini1 == -1) return 0;
cpFloat min2;
int mini2 = findMSA(poly1, poly2->tAxes, poly2->numVerts, &min2);
if(mini2 == -1) return 0;
// There is overlap, find the penetrating verts
if(min1 > min2)
return findVerts(arr, poly1, poly2, poly1->tAxes[mini1].n, min1);
else
return findVerts(arr, poly1, poly2, cpvneg(poly2->tAxes[mini2].n), min2);
}
// Like cpPolyValueOnAxis(), but for segments.
static inline cpFloat
segValueOnAxis(cpSegmentShape *seg, cpVect n, cpFloat d)
{
cpFloat a = cpvdot(n, seg->ta) - seg->r;
cpFloat b = cpvdot(n, seg->tb) - seg->r;
return cpfmin(a, b) - d;
}
// Identify vertexes that have penetrated the segment.
static inline void
findPointsBehindSeg(cpContact *arr, int *num, cpSegmentShape *seg, cpPolyShape *poly, cpFloat pDist, cpFloat coef)
{
cpFloat dta = cpvcross(seg->tn, seg->ta);
cpFloat dtb = cpvcross(seg->tn, seg->tb);
cpVect n = cpvmult(seg->tn, coef);
for(int i=0; i<poly->numVerts; i++){
cpVect v = poly->tVerts[i];
if(cpvdot(v, n) < cpvdot(seg->tn, seg->ta)*coef + seg->r){
cpFloat dt = cpvcross(seg->tn, v);
if(dta >= dt && dt >= dtb){
cpContactInit(nextContactPoint(arr, num), v, n, pDist, CP_HASH_PAIR(poly->shape.hashid, i));
}
}
}
}
// This one is complicated and gross. Just don't go there...
// TODO: Comment me!
static int
seg2poly(cpShape *shape1, cpShape *shape2, cpContact *arr)
{
cpSegmentShape *seg = (cpSegmentShape *)shape1;
cpPolyShape *poly = (cpPolyShape *)shape2;
cpPolyShapeAxis *axes = poly->tAxes;
cpFloat segD = cpvdot(seg->tn, seg->ta);
cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r;
cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r;
if(minNeg > 0.0f || minNorm > 0.0f) return 0;
int mini = 0;
cpFloat poly_min = segValueOnAxis(seg, axes->n, axes->d);
if(poly_min > 0.0f) return 0;
for(int i=0; i<poly->numVerts; i++){
cpFloat dist = segValueOnAxis(seg, axes[i].n, axes[i].d);
if(dist > 0.0f){
return 0;
} else if(dist > poly_min){
poly_min = dist;
mini = i;
}
}
int num = 0;
cpVect poly_n = cpvneg(axes[mini].n);
cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r));
cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r));
if(cpPolyShapeContainsVert(poly, va))
cpContactInit(nextContactPoint(arr, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 0));
if(cpPolyShapeContainsVert(poly, vb))
cpContactInit(nextContactPoint(arr, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 1));
// Floating point precision problems here.
// This will have to do for now.
poly_min -= cp_collision_slop;
if(minNorm >= poly_min || minNeg >= poly_min) {
if(minNorm > minNeg)
findPointsBehindSeg(arr, &num, seg, poly, minNorm, 1.0f);
else
findPointsBehindSeg(arr, &num, seg, poly, minNeg, -1.0f);
}
// If no other collision points are found, try colliding endpoints.
if(num == 0){
cpVect poly_a = poly->tVerts[mini];
cpVect poly_b = poly->tVerts[(mini + 1)%poly->numVerts];
if(circle2circleQuery(seg->ta, poly_a, seg->r, 0.0f, arr))
return 1;
if(circle2circleQuery(seg->tb, poly_a, seg->r, 0.0f, arr))
return 1;
if(circle2circleQuery(seg->ta, poly_b, seg->r, 0.0f, arr))
return 1;
if(circle2circleQuery(seg->tb, poly_b, seg->r, 0.0f, arr))
return 1;
}
return num;
}
// This one is less gross, but still gross.
// TODO: Comment me!
static int
circle2poly(cpShape *shape1, cpShape *shape2, cpContact *con)
{
cpCircleShape *circ = (cpCircleShape *)shape1;
cpPolyShape *poly = (cpPolyShape *)shape2;
cpPolyShapeAxis *axes = poly->tAxes;
int mini = 0;
cpFloat min = cpvdot(axes->n, circ->tc) - axes->d - circ->r;
for(int i=0; i<poly->numVerts; i++){
cpFloat dist = cpvdot(axes[i].n, circ->tc) - axes[i].d - circ->r;
if(dist > 0.0f){
return 0;
} else if(dist > min) {
min = dist;
mini = i;
}
}
cpVect n = axes[mini].n;
cpVect a = poly->tVerts[mini];
cpVect b = poly->tVerts[(mini + 1)%poly->numVerts];
cpFloat dta = cpvcross(n, a);
cpFloat dtb = cpvcross(n, b);
cpFloat dt = cpvcross(n, circ->tc);
if(dt < dtb){
return circle2circleQuery(circ->tc, b, circ->r, 0.0f, con);
} else if(dt < dta) {
cpContactInit(
con,
cpvsub(circ->tc, cpvmult(n, circ->r + min/2.0f)),
cpvneg(n),
min,
0
);
return 1;
} else {
return circle2circleQuery(circ->tc, a, circ->r, 0.0f, con);
}
}
//static const collisionFunc builtinCollisionFuncs[9] = {
// circle2circle,
// NULL,
// NULL,
// circle2segment,
// NULL,
// NULL,
// circle2poly,
// seg2poly,
// poly2poly,
//};
//static const collisionFunc *colfuncs = builtinCollisionFuncs;
static collisionFunc *colfuncs = NULL;
static void
addColFunc(cpShapeType a, cpShapeType b, collisionFunc func)
{
colfuncs[a + b*CP_NUM_SHAPES] = func;
}
#ifdef __cplusplus
extern "C" {
#endif
void cpInitCollisionFuncs(void);
// Initializes the array of collision functions.
// Called by cpInitChipmunk().
void
cpInitCollisionFuncs(void)
{
if(!colfuncs)
colfuncs = (collisionFunc *)cpcalloc(CP_NUM_SHAPES*CP_NUM_SHAPES, sizeof(collisionFunc));
addColFunc(CP_CIRCLE_SHAPE, CP_CIRCLE_SHAPE, circle2circle);
addColFunc(CP_CIRCLE_SHAPE, CP_SEGMENT_SHAPE, circle2segment);
addColFunc(CP_SEGMENT_SHAPE, CP_POLY_SHAPE, seg2poly);
addColFunc(CP_CIRCLE_SHAPE, CP_POLY_SHAPE, circle2poly);
addColFunc(CP_POLY_SHAPE, CP_POLY_SHAPE, poly2poly);
}
#ifdef __cplusplus
}
#endif
int
cpCollideShapes(cpShape *a, cpShape *b, cpContact *arr)
{
// Their shape types must be in order.
cpAssert(a->klass->type <= b->klass->type, "Collision shapes passed to cpCollideShapes() are not sorted.");
collisionFunc cfunc = colfuncs[a->klass->type + b->klass->type*CP_NUM_SHAPES];
return (cfunc) ? cfunc(a, b, arr) : 0;
}