axmol/chipmunk/src/cpSpace.c

900 lines
26 KiB
C
Raw Normal View History

2010-09-04 18:18:14 +08:00
/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "chipmunk.h"
int cp_contact_persistence = 1;
#pragma mark Contact Set Helpers
// Equal function for contactSet.
static int
contactSetEql(cpShape **shapes, cpArbiter *arb)
{
cpShape *a = shapes[0];
cpShape *b = shapes[1];
return ((a == arb->private_a && b == arb->private_b) || (b == arb->private_a && a == arb->private_b));
}
// Transformation function for contactSet.
static void *
contactSetTrans(cpShape **shapes, cpSpace *space)
{
if(space->pooledArbiters->num == 0){
// arbiter pool is exhausted, make more
int count = CP_BUFFER_BYTES/sizeof(cpArbiter);
cpAssert(count, "Buffer size too small.");
cpArbiter *buffer = (cpArbiter *)cpmalloc(CP_BUFFER_BYTES);
cpArrayPush(space->allocatedBuffers, buffer);
for(int i=0; i<count; i++) cpArrayPush(space->pooledArbiters, buffer + i);
}
return cpArbiterInit( (cpArbiter *)cpArrayPop(space->pooledArbiters), shapes[0], shapes[1]);
}
#pragma mark Collision Pair Function Helpers
// Equals function for collFuncSet.
static int
collFuncSetEql(cpCollisionHandler *check, cpCollisionHandler *pair)
{
return ((check->a == pair->a && check->b == pair->b) || (check->b == pair->a && check->a == pair->b));
}
// Transformation function for collFuncSet.
static void *
collFuncSetTrans(cpCollisionHandler *handler, void *unused)
{
cpCollisionHandler *copy = (cpCollisionHandler *)cpmalloc(sizeof(cpCollisionHandler));
(*copy) = (*handler);
return copy;
}
#pragma mark Post Step Function Helpers
typedef struct postStepCallback {
cpPostStepFunc func;
void *obj;
void *data;
} postStepCallback;
static int
postStepFuncSetEql(postStepCallback *a, postStepCallback *b){
return a->obj == b->obj;
}
static void *
postStepFuncSetTrans(postStepCallback *callback, void *ignored)
{
postStepCallback *value = (postStepCallback *)cpmalloc(sizeof(postStepCallback));
(*value) = (*callback);
return value;
}
#pragma mark Misc Helper Funcs
// Default collision functions.
static int alwaysCollide(cpArbiter *arb, cpSpace *space, void *data){return 1;}
static void nothing(cpArbiter *arb, cpSpace *space, void *data){}
// BBfunc callback for the spatial hash.
static cpBB shapeBBFunc(cpShape *shape){return shape->bb;}
// Iterator functions for destructors.
static void freeWrap(void *ptr, void *unused){ cpfree(ptr);}
static void shapeFreeWrap(cpShape *ptr, void *unused){ cpShapeFree(ptr);}
static void bodyFreeWrap(cpBody *ptr, void *unused){ cpBodyFree(ptr);}
static void constraintFreeWrap(cpConstraint *ptr, void *unused){cpConstraintFree(ptr);}
#pragma mark Memory Management Functions
#define CP_CONTACTS_BUFFER_SIZE ((CP_BUFFER_BYTES - sizeof(cpContactBufferHeader))/sizeof(cpContact))
typedef struct cpContactBuffer {
cpContactBufferHeader header;
cpContact contacts[CP_CONTACTS_BUFFER_SIZE];
} cpContactBuffer;
static cpContactBufferHeader *
cpSpaceAllocContactBuffer(cpSpace *space)
{
cpContactBuffer *buffer = (cpContactBuffer *)malloc(sizeof(cpContactBuffer));
cpArrayPush(space->allocatedBuffers, buffer);
return (cpContactBufferHeader *)buffer;
}
static cpContactBufferHeader *
cpContactBufferHeaderInit(cpContactBufferHeader *header, cpSpace *space)
{
header->stamp = space->stamp;
header->next = space->contactBuffersTail;
header->numContacts = 0;
return header;
}
cpSpace *
cpSpaceAlloc(void)
{
return (cpSpace *)cpcalloc(1, sizeof(cpSpace));
}
#define DEFAULT_DIM_SIZE 100.0f
#define DEFAULT_COUNT 1000
#define DEFAULT_ITERATIONS 10
#define DEFAULT_ELASTIC_ITERATIONS 0
#define MAX_CONTACTS 10000
cpCollisionHandler defaultHandler = {0, 0, alwaysCollide, alwaysCollide, nothing, nothing, NULL};
cpSpace*
cpSpaceInit(cpSpace *space)
{
space->iterations = DEFAULT_ITERATIONS;
space->elasticIterations = DEFAULT_ELASTIC_ITERATIONS;
// space->sleepTicks = 300;
space->gravity = cpvzero;
space->damping = 1.0f;
space->locked = 0;
space->stamp = 0;
space->staticShapes = cpSpaceHashNew(DEFAULT_DIM_SIZE, DEFAULT_COUNT, (cpSpaceHashBBFunc)shapeBBFunc);
space->activeShapes = cpSpaceHashNew(DEFAULT_DIM_SIZE, DEFAULT_COUNT, (cpSpaceHashBBFunc)shapeBBFunc);
space->allocatedBuffers = cpArrayNew(0);
space->bodies = cpArrayNew(0);
space->arbiters = cpArrayNew(0);
space->pooledArbiters = cpArrayNew(0);
cpContactBufferHeader *header = cpContactBufferHeaderInit(cpSpaceAllocContactBuffer(space), space);
space->contactBuffersHead = header;
space->contactBuffersTail = header;
header->next = header; // Buffers will form a ring, start the ring explicitly
space->contactSet = cpHashSetNew(0, (cpHashSetEqlFunc)contactSetEql, (cpHashSetTransFunc)contactSetTrans);
space->constraints = cpArrayNew(0);
space->defaultHandler = defaultHandler;
space->collFuncSet = cpHashSetNew(0, (cpHashSetEqlFunc)collFuncSetEql, (cpHashSetTransFunc)collFuncSetTrans);
space->collFuncSet->default_value = &space->defaultHandler;
space->postStepCallbacks = cpHashSetNew(0, (cpHashSetEqlFunc)postStepFuncSetEql, (cpHashSetTransFunc)postStepFuncSetTrans);
return space;
}
cpSpace*
cpSpaceNew(void)
{
return cpSpaceInit(cpSpaceAlloc());
}
void
cpSpaceDestroy(cpSpace *space)
{
cpSpaceHashFree(space->staticShapes);
cpSpaceHashFree(space->activeShapes);
cpArrayFree(space->bodies);
cpArrayFree(space->constraints);
cpHashSetFree(space->contactSet);
cpArrayFree(space->arbiters);
cpArrayFree(space->pooledArbiters);
if(space->allocatedBuffers){
cpArrayEach(space->allocatedBuffers, freeWrap, NULL);
cpArrayFree(space->allocatedBuffers);
}
if(space->postStepCallbacks){
cpHashSetEach(space->postStepCallbacks, freeWrap, NULL);
cpHashSetFree(space->postStepCallbacks);
}
if(space->collFuncSet){
cpHashSetEach(space->collFuncSet, freeWrap, NULL);
cpHashSetFree(space->collFuncSet);
}
}
void
cpSpaceFree(cpSpace *space)
{
if(space){
cpSpaceDestroy(space);
cpfree(space);
}
}
void
cpSpaceFreeChildren(cpSpace *space)
{
cpSpaceHashEach(space->staticShapes, (cpSpaceHashIterator)&shapeFreeWrap, NULL);
cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)&shapeFreeWrap, NULL);
cpArrayEach(space->bodies, (cpArrayIter)&bodyFreeWrap, NULL);
cpArrayEach(space->constraints, (cpArrayIter)&constraintFreeWrap, NULL);
}
#pragma mark Collision Handler Function Management
void
cpSpaceAddCollisionHandler(
cpSpace *space,
cpCollisionType a, cpCollisionType b,
cpCollisionBeginFunc begin,
cpCollisionPreSolveFunc preSolve,
cpCollisionPostSolveFunc postSolve,
cpCollisionSeparateFunc separate,
void *data
){
// Remove any old function so the new one will get added.
cpSpaceRemoveCollisionHandler(space, a, b);
cpCollisionHandler handler = {
a, b,
begin ? begin : alwaysCollide,
preSolve ? preSolve : alwaysCollide,
postSolve ? postSolve : nothing,
separate ? separate : nothing,
data
};
cpHashSetInsert(space->collFuncSet, CP_HASH_PAIR(a, b), &handler, NULL);
}
void
cpSpaceRemoveCollisionHandler(cpSpace *space, cpCollisionType a, cpCollisionType b)
{
struct{cpCollisionType a, b;} ids = {a, b};
cpCollisionHandler *old_handler = (cpCollisionHandler *) cpHashSetRemove(space->collFuncSet, CP_HASH_PAIR(a, b), &ids);
cpfree(old_handler);
}
void
cpSpaceSetDefaultCollisionHandler(
cpSpace *space,
cpCollisionBeginFunc begin,
cpCollisionPreSolveFunc preSolve,
cpCollisionPostSolveFunc postSolve,
cpCollisionSeparateFunc separate,
void *data
){
cpCollisionHandler handler = {
0, 0,
begin ? begin : alwaysCollide,
preSolve ? preSolve : alwaysCollide,
postSolve ? postSolve : nothing,
separate ? separate : nothing,
data
};
space->defaultHandler = handler;
}
#pragma mark Body, Shape, and Joint Management
#define cpAssertSpaceUnlocked(space) \
cpAssert(!space->locked, \
"This addition/removal cannot be done safely during a call to cpSpaceStep(). " \
"Put these calls into a Post Step Callback." \
);
cpShape *
cpSpaceAddShape(cpSpace *space, cpShape *shape)
{
cpAssert(shape->body, "Cannot add a shape with a NULL body.");
cpAssert(!cpHashSetFind(space->activeShapes->handleSet, shape->hashid, shape),
"Cannot add the same shape more than once.");
cpAssertSpaceUnlocked(space);
cpSpaceHashInsert(space->activeShapes, shape, shape->hashid, shape->bb);
return shape;
}
cpShape *
cpSpaceAddStaticShape(cpSpace *space, cpShape *shape)
{
cpAssert(shape->body, "Cannot add a static shape with a NULL body.");
cpAssert(!cpHashSetFind(space->staticShapes->handleSet, shape->hashid, shape),
"Cannot add the same static shape more than once.");
cpAssertSpaceUnlocked(space);
cpShapeCacheBB(shape);
cpSpaceHashInsert(space->staticShapes, shape, shape->hashid, shape->bb);
return shape;
}
cpBody *
cpSpaceAddBody(cpSpace *space, cpBody *body)
{
cpAssert(!cpArrayContains(space->bodies, body), "Cannot add the same body more than once.");
// cpAssertSpaceUnlocked(space); This should be safe as long as it's not from an integration callback
cpArrayPush(space->bodies, body);
return body;
}
cpConstraint *
cpSpaceAddConstraint(cpSpace *space, cpConstraint *constraint)
{
cpAssert(!cpArrayContains(space->constraints, constraint), "Cannot add the same constraint more than once.");
// cpAssertSpaceUnlocked(space); This should be safe as long as its not from a constraint callback.
cpArrayPush(space->constraints, constraint);
return constraint;
}
typedef struct removalContext {
cpSpace *space;
cpShape *shape;
} removalContext;
// Hashset filter func to throw away old arbiters.
static int
contactSetFilterRemovedShape(cpArbiter *arb, removalContext *context)
{
if(context->shape == arb->private_a || context->shape == arb->private_b){
arb->handler->separate(arb, context->space, arb->handler->data);
cpArrayPush(context->space->pooledArbiters, arb);
return 0;
}
return 1;
}
void
cpSpaceRemoveShape(cpSpace *space, cpShape *shape)
{
cpAssertWarn(cpHashSetFind(space->activeShapes->handleSet, shape->hashid, shape),
"Cannot remove a shape that was never added to the space. (Removed twice maybe?)");
cpAssertSpaceUnlocked(space);
removalContext context = {space, shape};
cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilterRemovedShape, &context);
cpSpaceHashRemove(space->activeShapes, shape, shape->hashid);
}
void
cpSpaceRemoveStaticShape(cpSpace *space, cpShape *shape)
{
cpAssertWarn(cpHashSetFind(space->staticShapes->handleSet, shape->hashid, shape),
"Cannot remove a static shape that was never added to the space. (Removed twice maybe?)");
cpAssertSpaceUnlocked(space);
removalContext context = {space, shape};
cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilterRemovedShape, &context);
cpSpaceHashRemove(space->staticShapes, shape, shape->hashid);
}
void
cpSpaceRemoveBody(cpSpace *space, cpBody *body)
{
cpAssertWarn(cpArrayContains(space->bodies, body),
"Cannot remove a body that was never added to the space. (Removed twice maybe?)");
cpAssertSpaceUnlocked(space);
cpArrayDeleteObj(space->bodies, body);
}
void
cpSpaceRemoveConstraint(cpSpace *space, cpConstraint *constraint)
{
cpAssertWarn(cpArrayContains(space->constraints, constraint),
"Cannot remove a constraint that was never added to the space. (Removed twice maybe?)");
// cpAssertSpaceUnlocked(space); Should be safe as long as its not from a constraint callback.
cpArrayDeleteObj(space->constraints, constraint);
}
#pragma mark Post Step Functions
void
cpSpaceAddPostStepCallback(cpSpace *space, cpPostStepFunc func, void *obj, void *data)
{
postStepCallback callback = {func, obj, data};
cpHashSetInsert(space->postStepCallbacks, (cpHashValue)(size_t)obj, &callback, NULL);
}
static void
removeAndFreeShapeAndBody(cpShape *shape, cpSpace *space)
{
cpSpaceRemoveShape(space, shape);
cpShapeFree(shape);
}
void
cpSpacePostStepRemoveAndFreeShapeAndBody(cpSpace *space, cpShape *shape)
{
cpSpaceAddPostStepCallback(space, (cpPostStepFunc)removeAndFreeShapeAndBody, shape, space);
}
#pragma mark Point Query Functions
typedef struct pointQueryContext {
cpLayers layers;
cpGroup group;
cpSpacePointQueryFunc func;
void *data;
} pointQueryContext;
static void
pointQueryHelper(cpVect *point, cpShape *shape, pointQueryContext *context)
{
if(
!(shape->group && context->group == shape->group) && (context->layers&shape->layers) &&
cpShapePointQuery(shape, *point)
){
context->func(shape, context->data);
}
}
void
cpSpacePointQuery(cpSpace *space, cpVect point, cpLayers layers, cpGroup group, cpSpacePointQueryFunc func, void *data)
{
pointQueryContext context = {layers, group, func, data};
cpSpaceHashPointQuery(space->activeShapes, point, (cpSpaceHashQueryFunc)pointQueryHelper, &context);
cpSpaceHashPointQuery(space->staticShapes, point, (cpSpaceHashQueryFunc)pointQueryHelper, &context);
}
static void
rememberLastPointQuery(cpShape *shape, cpShape **outShape)
{
(*outShape) = shape;
}
cpShape *
cpSpacePointQueryFirst(cpSpace *space, cpVect point, cpLayers layers, cpGroup group)
{
cpShape *shape = NULL;
cpSpacePointQuery(space, point, layers, group, (cpSpacePointQueryFunc)rememberLastPointQuery, &shape);
return shape;
}
void
cpSpaceEachBody(cpSpace *space, cpSpaceBodyIterator func, void *data)
{
cpArray *bodies = space->bodies;
for(int i=0; i<bodies->num; i++)
func((cpBody *)bodies->arr[i], data);
}
#pragma mark Segment Query Functions
typedef struct segQueryContext {
cpVect start, end;
cpLayers layers;
cpGroup group;
cpSpaceSegmentQueryFunc func;
int anyCollision;
} segQueryContext;
static cpFloat
segQueryFunc(segQueryContext *context, cpShape *shape, void *data)
{
cpSegmentQueryInfo info;
if(
!(shape->group && context->group == shape->group) && (context->layers&shape->layers) &&
cpShapeSegmentQuery(shape, context->start, context->end, &info)
){
if(context->func){
context->func(shape, info.t, info.n, data);
}
context->anyCollision = 1;
}
return 1.0f;
}
int
cpSpaceSegmentQuery(cpSpace *space, cpVect start, cpVect end, cpLayers layers, cpGroup group, cpSpaceSegmentQueryFunc func, void *data)
{
segQueryContext context = {
start, end,
layers, group,
func,
0,
};
cpSpaceHashSegmentQuery(space->staticShapes, &context, start, end, 1.0f, (cpSpaceHashSegmentQueryFunc)segQueryFunc, data);
cpSpaceHashSegmentQuery(space->activeShapes, &context, start, end, 1.0f, (cpSpaceHashSegmentQueryFunc)segQueryFunc, data);
return context.anyCollision;
}
typedef struct segQueryFirstContext {
cpVect start, end;
cpLayers layers;
cpGroup group;
} segQueryFirstContext;
static cpFloat
segQueryFirst(segQueryFirstContext *context, cpShape *shape, cpSegmentQueryInfo *out)
{
cpSegmentQueryInfo info;// = {NULL, 1.0f, cpvzero};
if(
!(shape->group && context->group == shape->group) && (context->layers&shape->layers) &&
cpShapeSegmentQuery(shape, context->start, context->end, &info)
){
if(info.t < out->t){
out->shape = info.shape;
out->t = info.t;
out->n = info.n;
}
return info.t;
}
return 1.0f;
}
cpShape *
cpSpaceSegmentQueryFirst(cpSpace *space, cpVect start, cpVect end, cpLayers layers, cpGroup group, cpSegmentQueryInfo *out)
{
cpSegmentQueryInfo info = {NULL, 1.0f, cpvzero};
if(out){
(*out) = info;
} else {
out = &info;
}
out->t = 1.0f;
segQueryFirstContext context = {
start, end,
layers, group
};
cpSpaceHashSegmentQuery(space->staticShapes, &context, start, end, 1.0f, (cpSpaceHashSegmentQueryFunc)segQueryFirst, out);
cpSpaceHashSegmentQuery(space->activeShapes, &context, start, end, out->t, (cpSpaceHashSegmentQueryFunc)segQueryFirst, out);
return out->shape;
}
#pragma mark BB Query functions
typedef struct bbQueryContext {
cpLayers layers;
cpGroup group;
cpSpaceBBQueryFunc func;
void *data;
} bbQueryContext;
static void
bbQueryHelper(cpBB *bb, cpShape *shape, bbQueryContext *context)
{
if(
!(shape->group && context->group == shape->group) && (context->layers&shape->layers) &&
cpBBintersects(*bb, shape->bb)
){
context->func(shape, context->data);
}
}
void
cpSpaceBBQuery(cpSpace *space, cpBB bb, cpLayers layers, cpGroup group, cpSpaceBBQueryFunc func, void *data)
{
bbQueryContext context = {layers, group, func, data};
cpSpaceHashQuery(space->activeShapes, &bb, bb, (cpSpaceHashQueryFunc)bbQueryHelper, &context);
cpSpaceHashQuery(space->staticShapes, &bb, bb, (cpSpaceHashQueryFunc)bbQueryHelper, &context);
}
#pragma mark Spatial Hash Management
// Iterator function used for updating shape BBoxes.
static void
updateBBCache(cpShape *shape, void *unused)
{
cpShapeCacheBB(shape);
}
void
cpSpaceResizeStaticHash(cpSpace *space, cpFloat dim, int count)
{
cpSpaceHashResize(space->staticShapes, dim, count);
cpSpaceHashRehash(space->staticShapes);
}
void
cpSpaceResizeActiveHash(cpSpace *space, cpFloat dim, int count)
{
cpSpaceHashResize(space->activeShapes, dim, count);
}
void
cpSpaceRehashStatic(cpSpace *space)
{
cpSpaceHashEach(space->staticShapes, (cpSpaceHashIterator)&updateBBCache, NULL);
cpSpaceHashRehash(space->staticShapes);
}
#pragma mark Collision Detection Functions
static cpContactBufferHeader *
cpSpaceGetFreeContactBuffer(cpSpace *space)
{
if(space->stamp - space->contactBuffersTail->stamp > cp_contact_persistence){
cpContactBufferHeader *header = space->contactBuffersTail;
space->contactBuffersTail = header->next;
return cpContactBufferHeaderInit(header, space);
} else {
cpContactBufferHeader *header = cpSpaceAllocContactBuffer(space);
return cpContactBufferHeaderInit(header, space);
}
}
static void
cpSpacePushNewContactBuffer(cpSpace *space)
{
// for(cpContactBuffer *buffer = space->contactBuffersTail; buffer != space->contactBuffersHead; buffer = buffer->next){
// printf("%p -> ", buffer);
// }
// printf("%p (head)\n", space->contactBuffersHead);
cpContactBufferHeader *buffer = cpSpaceGetFreeContactBuffer(space);
space->contactBuffersHead->next = buffer;
space->contactBuffersHead = buffer;
}
static inline int
queryReject(cpShape *a, cpShape *b)
{
return
// BBoxes must overlap
!cpBBintersects(a->bb, b->bb)
// Don't collide shapes attached to the same body.
|| a->body == b->body
// Don't collide objects in the same non-zero group
|| (a->group && b->group && a->group == b->group)
// Don't collide objects that don't share at least on layer.
|| !(a->layers & b->layers);
}
// Callback from the spatial hash.
static void
queryFunc(cpShape *a, cpShape *b, cpSpace *space)
{
// Reject any of the simple cases
if(queryReject(a,b)) return;
// Find the collision pair function for the shapes.
struct{cpCollisionType a, b;} ids = {a->collision_type, b->collision_type};
cpHashValue collHashID = CP_HASH_PAIR(a->collision_type, b->collision_type);
cpCollisionHandler *handler = (cpCollisionHandler *)cpHashSetFind(space->collFuncSet, collHashID, &ids);
int sensor = a->sensor || b->sensor;
if(sensor && handler == &space->defaultHandler) return;
// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
if(a->klass->type > b->klass->type){
cpShape *temp = a;
a = b;
b = temp;
}
if(space->contactBuffersHead->numContacts + CP_MAX_CONTACTS_PER_ARBITER > CP_CONTACTS_BUFFER_SIZE){
// contact buffer could overflow on the next collision, push a fresh one.
cpSpacePushNewContactBuffer(space);
}
// Narrow-phase collision detection.
cpContact *contacts = ((cpContactBuffer *)(space->contactBuffersHead))->contacts + space->contactBuffersHead->numContacts;
int numContacts = cpCollideShapes(a, b, contacts);
if(!numContacts) return; // Shapes are not colliding.
space->contactBuffersHead->numContacts += numContacts;
// Get an arbiter from space->contactSet for the two shapes.
// This is where the persistant contact magic comes from.
cpShape *shape_pair[] = {a, b};
cpHashValue arbHashID = CP_HASH_PAIR((size_t)a, (size_t)b);
cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, arbHashID, shape_pair, space);
cpArbiterUpdate(arb, contacts, numContacts, handler, a, b); // retains the contacts array
// Call the begin function first if it's the first step
if(arb->stamp == -1 && !handler->begin(arb, space, handler->data)){
cpArbiterIgnore(arb); // permanently ignore the collision until separation
}
if(
// Ignore the arbiter if it has been flagged
(arb->state != cpArbiterStateIgnore) &&
// Call preSolve
handler->preSolve(arb, space, handler->data) &&
// Process, but don't add collisions for sensors.
!sensor
){
cpArrayPush(space->arbiters, arb);
} else {
// cpfree(arb->contacts);
space->contactBuffersHead->numContacts -= numContacts;
arb->contacts = NULL;
arb->numContacts = 0;
}
// Time stamp the arbiter so we know it was used recently.
arb->stamp = space->stamp;
}
// Iterator for active/static hash collisions.
static void
active2staticIter(cpShape *shape, cpSpace *space)
{
cpSpaceHashQuery(space->staticShapes, shape, shape->bb, (cpSpaceHashQueryFunc)queryFunc, space);
}
// Hashset filter func to throw away old arbiters.
static int
contactSetFilter(cpArbiter *arb, cpSpace *space)
{
int ticks = space->stamp - arb->stamp;
// was used last frame, but not this one
if(ticks == 1){
arb->handler->separate(arb, space, arb->handler->data);
arb->stamp = -1; // mark it as a new pair again.
}
if(ticks >= cp_contact_persistence){
cpArrayPush(space->pooledArbiters, arb);
return 0;
}
return 1;
}
// Hashset filter func to call and throw away post step callbacks.
static int
postStepCallbackSetFilter(postStepCallback *callback, cpSpace *space)
{
callback->func(space, callback->obj, callback->data);
cpfree(callback);
return 0;
}
#pragma mark All Important cpSpaceStep() Function
void
cpSpaceStep(cpSpace *space, cpFloat dt)
{
if(!dt) return; // don't step if the timestep is 0!
cpFloat dt_inv = 1.0f/dt;
cpArray *bodies = space->bodies;
cpArray *constraints = space->constraints;
space->locked = 1;
// Empty the arbiter list.
space->arbiters->num = 0;
// Integrate positions.
for(int i=0; i<bodies->num; i++){
cpBody *body = (cpBody *)bodies->arr[i];
body->position_func(body, dt);
}
// Pre-cache BBoxes and shape data.
cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)updateBBCache, NULL);
// Collide!
cpSpacePushNewContactBuffer(space);
cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)active2staticIter, space);
cpSpaceHashQueryRehash(space->activeShapes, (cpSpaceHashQueryFunc)queryFunc, space);
// Clear out old cached arbiters and dispatch untouch functions
cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilter, space);
// Prestep the arbiters.
cpArray *arbiters = space->arbiters;
for(int i=0; i<arbiters->num; i++)
cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt_inv);
// Prestep the constraints.
for(int i=0; i<constraints->num; i++){
cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
constraint->klass->preStep(constraint, dt, dt_inv);
}
for(int i=0; i<space->elasticIterations; i++){
for(int j=0; j<arbiters->num; j++)
cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], 1.0f);
for(int j=0; j<constraints->num; j++){
cpConstraint *constraint = (cpConstraint *)constraints->arr[j];
constraint->klass->applyImpulse(constraint);
}
}
// Integrate velocities.
cpFloat damping = cpfpow(1.0f/space->damping, -dt);
for(int i=0; i<bodies->num; i++){
cpBody *body = (cpBody *)bodies->arr[i];
body->velocity_func(body, space->gravity, damping, dt);
}
for(int i=0; i<arbiters->num; i++)
cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i]);
// run the old-style elastic solver if elastic iterations are disabled
cpFloat elasticCoef = (space->elasticIterations ? 0.0f : 1.0f);
// Run the impulse solver.
for(int i=0; i<space->iterations; i++){
for(int j=0; j<arbiters->num; j++)
cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], elasticCoef);
for(int j=0; j<constraints->num; j++){
cpConstraint *constraint = (cpConstraint *)constraints->arr[j];
constraint->klass->applyImpulse(constraint);
}
}
space->locked = 0;
// run the post solve callbacks
for(int i=0; i<arbiters->num; i++){
cpArbiter *arb = (cpArbiter *) arbiters->arr[i];
cpCollisionHandler *handler = arb->handler;
handler->postSolve(arb, space, handler->data);
arb->state = cpArbiterStateNormal;
}
// Run the post step callbacks
// Use filter as an easy way to clear out the queue as it runs
cpHashSetFilter(space->postStepCallbacks, (cpHashSetFilterFunc)postStepCallbackSetFilter, space);
// cpFloat dvsq = cpvdot(space->gravity, space->gravity);
// dvsq *= dt*dt * space->damping*space->damping;
// for(int i=0; i<bodies->num; i++)
// cpBodyMarkLowEnergy(bodies->arr[i], dvsq, space->sleepTicks);
// Increment the stamp.
space->stamp++;
}