2014-04-02 10:33:07 +08:00
|
|
|
#include "Quaternion.h"
|
2014-04-02 11:06:37 +08:00
|
|
|
#include "ccMacros.h"
|
2014-04-02 10:33:07 +08:00
|
|
|
|
2014-04-02 12:09:51 +08:00
|
|
|
NS_CC_MATH_BEGIN
|
2014-04-02 10:33:07 +08:00
|
|
|
|
|
|
|
Quaternion::Quaternion()
|
|
|
|
: x(0.0f), y(0.0f), z(0.0f), w(1.0f)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2014-04-16 11:18:23 +08:00
|
|
|
Quaternion::Quaternion(float xx, float yy, float zz, float ww)
|
|
|
|
: x(xx), y(yy), z(zz), w(ww)
|
2014-04-02 10:33:07 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
Quaternion::Quaternion(float* array)
|
|
|
|
{
|
|
|
|
set(array);
|
|
|
|
}
|
|
|
|
|
|
|
|
Quaternion::Quaternion(const Matrix& m)
|
|
|
|
{
|
|
|
|
set(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
Quaternion::Quaternion(const Vector3& axis, float angle)
|
|
|
|
{
|
|
|
|
set(axis, angle);
|
|
|
|
}
|
|
|
|
|
|
|
|
Quaternion::Quaternion(const Quaternion& copy)
|
|
|
|
{
|
|
|
|
set(copy);
|
|
|
|
}
|
|
|
|
|
|
|
|
Quaternion::~Quaternion()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
const Quaternion& Quaternion::identity()
|
|
|
|
{
|
|
|
|
static Quaternion value(0.0f, 0.0f, 0.0f, 1.0f);
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Quaternion& Quaternion::zero()
|
|
|
|
{
|
|
|
|
static Quaternion value(0.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Quaternion::isIdentity() const
|
|
|
|
{
|
|
|
|
return x == 0.0f && y == 0.0f && z == 0.0f && w == 1.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Quaternion::isZero() const
|
|
|
|
{
|
|
|
|
return x == 0.0f && y == 0.0f && z == 0.0f && w == 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::createFromRotationMatrix(const Matrix& m, Quaternion* dst)
|
|
|
|
{
|
|
|
|
m.getRotation(dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::createFromAxisAngle(const Vector3& axis, float angle, Quaternion* dst)
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
|
|
|
|
float halfAngle = angle * 0.5f;
|
|
|
|
float sinHalfAngle = sinf(halfAngle);
|
|
|
|
|
|
|
|
Vector3 normal(axis);
|
|
|
|
normal.normalize();
|
|
|
|
dst->x = normal.x * sinHalfAngle;
|
|
|
|
dst->y = normal.y * sinHalfAngle;
|
|
|
|
dst->z = normal.z * sinHalfAngle;
|
|
|
|
dst->w = cosf(halfAngle);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::conjugate()
|
|
|
|
{
|
|
|
|
conjugate(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::conjugate(Quaternion* dst) const
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
|
|
|
|
dst->x = -x;
|
|
|
|
dst->y = -y;
|
|
|
|
dst->z = -z;
|
|
|
|
dst->w = w;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Quaternion::inverse()
|
|
|
|
{
|
|
|
|
return inverse(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Quaternion::inverse(Quaternion* dst) const
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
|
|
|
|
float n = x * x + y * y + z * z + w * w;
|
|
|
|
if (n == 1.0f)
|
|
|
|
{
|
|
|
|
dst->x = -x;
|
|
|
|
dst->y = -y;
|
|
|
|
dst->z = -z;
|
|
|
|
dst->w = w;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Too close to zero.
|
|
|
|
if (n < 0.000001f)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
n = 1.0f / n;
|
|
|
|
dst->x = -x * n;
|
|
|
|
dst->y = -y * n;
|
|
|
|
dst->z = -z * n;
|
|
|
|
dst->w = w * n;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::multiply(const Quaternion& q)
|
|
|
|
{
|
|
|
|
multiply(*this, q, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::multiply(const Quaternion& q1, const Quaternion& q2, Quaternion* dst)
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
|
|
|
|
float x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
|
|
|
|
float y = q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x;
|
|
|
|
float z = q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w;
|
|
|
|
float w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
|
|
|
|
|
|
|
|
dst->x = x;
|
|
|
|
dst->y = y;
|
|
|
|
dst->z = z;
|
|
|
|
dst->w = w;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::normalize()
|
|
|
|
{
|
|
|
|
normalize(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::normalize(Quaternion* dst) const
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
|
|
|
|
if (this != dst)
|
|
|
|
{
|
|
|
|
dst->x = x;
|
|
|
|
dst->y = y;
|
|
|
|
dst->z = z;
|
|
|
|
dst->w = w;
|
|
|
|
}
|
|
|
|
|
|
|
|
float n = x * x + y * y + z * z + w * w;
|
|
|
|
|
|
|
|
// Already normalized.
|
|
|
|
if (n == 1.0f)
|
|
|
|
return;
|
|
|
|
|
|
|
|
n = sqrt(n);
|
|
|
|
// Too close to zero.
|
|
|
|
if (n < 0.000001f)
|
|
|
|
return;
|
|
|
|
|
|
|
|
n = 1.0f / n;
|
|
|
|
dst->x *= n;
|
|
|
|
dst->y *= n;
|
|
|
|
dst->z *= n;
|
|
|
|
dst->w *= n;
|
|
|
|
}
|
|
|
|
|
2014-04-16 11:18:23 +08:00
|
|
|
void Quaternion::set(float xx, float yy, float zz, float ww)
|
2014-04-02 10:33:07 +08:00
|
|
|
{
|
2014-04-16 11:18:23 +08:00
|
|
|
this->x = xx;
|
|
|
|
this->y = yy;
|
|
|
|
this->z = zz;
|
|
|
|
this->w = ww;
|
2014-04-02 10:33:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::set(float* array)
|
|
|
|
{
|
|
|
|
GP_ASSERT(array);
|
|
|
|
|
|
|
|
x = array[0];
|
|
|
|
y = array[1];
|
|
|
|
z = array[2];
|
|
|
|
w = array[3];
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::set(const Matrix& m)
|
|
|
|
{
|
|
|
|
Quaternion::createFromRotationMatrix(m, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::set(const Vector3& axis, float angle)
|
|
|
|
{
|
|
|
|
Quaternion::createFromAxisAngle(axis, angle, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::set(const Quaternion& q)
|
|
|
|
{
|
|
|
|
this->x = q.x;
|
|
|
|
this->y = q.y;
|
|
|
|
this->z = q.z;
|
|
|
|
this->w = q.w;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::setIdentity()
|
|
|
|
{
|
|
|
|
x = 0.0f;
|
|
|
|
y = 0.0f;
|
|
|
|
z = 0.0f;
|
|
|
|
w = 1.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
float Quaternion::toAxisAngle(Vector3* axis) const
|
|
|
|
{
|
|
|
|
GP_ASSERT(axis);
|
|
|
|
|
|
|
|
Quaternion q(x, y, z, w);
|
|
|
|
q.normalize();
|
|
|
|
axis->x = q.x;
|
|
|
|
axis->y = q.y;
|
|
|
|
axis->z = q.z;
|
|
|
|
axis->normalize();
|
|
|
|
|
|
|
|
return (2.0f * acos(q.w));
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::lerp(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst)
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
GP_ASSERT(!(t < 0.0f || t > 1.0f));
|
|
|
|
|
|
|
|
if (t == 0.0f)
|
|
|
|
{
|
|
|
|
memcpy(dst, &q1, sizeof(float) * 4);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (t == 1.0f)
|
|
|
|
{
|
|
|
|
memcpy(dst, &q2, sizeof(float) * 4);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
float t1 = 1.0f - t;
|
|
|
|
|
|
|
|
dst->x = t1 * q1.x + t * q2.x;
|
|
|
|
dst->y = t1 * q1.y + t * q2.y;
|
|
|
|
dst->z = t1 * q1.z + t * q2.z;
|
|
|
|
dst->w = t1 * q1.w + t * q2.w;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::slerp(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst)
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
slerp(q1.x, q1.y, q1.z, q1.w, q2.x, q2.y, q2.z, q2.w, t, &dst->x, &dst->y, &dst->z, &dst->w);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::squad(const Quaternion& q1, const Quaternion& q2, const Quaternion& s1, const Quaternion& s2, float t, Quaternion* dst)
|
|
|
|
{
|
|
|
|
GP_ASSERT(!(t < 0.0f || t > 1.0f));
|
|
|
|
|
|
|
|
Quaternion dstQ(0.0f, 0.0f, 0.0f, 1.0f);
|
|
|
|
Quaternion dstS(0.0f, 0.0f, 0.0f, 1.0f);
|
|
|
|
|
|
|
|
slerpForSquad(q1, q2, t, &dstQ);
|
|
|
|
slerpForSquad(s1, s2, t, &dstS);
|
|
|
|
slerpForSquad(dstQ, dstS, 2.0f * t * (1.0f - t), dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::slerp(float q1x, float q1y, float q1z, float q1w, float q2x, float q2y, float q2z, float q2w, float t, float* dstx, float* dsty, float* dstz, float* dstw)
|
|
|
|
{
|
|
|
|
// Fast slerp implementation by kwhatmough:
|
|
|
|
// It contains no division operations, no trig, no inverse trig
|
|
|
|
// and no sqrt. Not only does this code tolerate small constraint
|
|
|
|
// errors in the input quaternions, it actually corrects for them.
|
|
|
|
GP_ASSERT(dstx && dsty && dstz && dstw);
|
|
|
|
GP_ASSERT(!(t < 0.0f || t > 1.0f));
|
|
|
|
|
|
|
|
if (t == 0.0f)
|
|
|
|
{
|
|
|
|
*dstx = q1x;
|
|
|
|
*dsty = q1y;
|
|
|
|
*dstz = q1z;
|
|
|
|
*dstw = q1w;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (t == 1.0f)
|
|
|
|
{
|
|
|
|
*dstx = q2x;
|
|
|
|
*dsty = q2y;
|
|
|
|
*dstz = q2z;
|
|
|
|
*dstw = q2w;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q1x == q2x && q1y == q2y && q1z == q2z && q1w == q2w)
|
|
|
|
{
|
|
|
|
*dstx = q1x;
|
|
|
|
*dsty = q1y;
|
|
|
|
*dstz = q1z;
|
|
|
|
*dstw = q1w;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
float halfY, alpha, beta;
|
|
|
|
float u, f1, f2a, f2b;
|
|
|
|
float ratio1, ratio2;
|
|
|
|
float halfSecHalfTheta, versHalfTheta;
|
|
|
|
float sqNotU, sqU;
|
|
|
|
|
|
|
|
float cosTheta = q1w * q2w + q1x * q2x + q1y * q2y + q1z * q2z;
|
|
|
|
|
|
|
|
// As usual in all slerp implementations, we fold theta.
|
|
|
|
alpha = cosTheta >= 0 ? 1.0f : -1.0f;
|
|
|
|
halfY = 1.0f + alpha * cosTheta;
|
|
|
|
|
|
|
|
// Here we bisect the interval, so we need to fold t as well.
|
|
|
|
f2b = t - 0.5f;
|
|
|
|
u = f2b >= 0 ? f2b : -f2b;
|
|
|
|
f2a = u - f2b;
|
|
|
|
f2b += u;
|
|
|
|
u += u;
|
|
|
|
f1 = 1.0f - u;
|
|
|
|
|
|
|
|
// One iteration of Newton to get 1-cos(theta / 2) to good accuracy.
|
|
|
|
halfSecHalfTheta = 1.09f - (0.476537f - 0.0903321f * halfY) * halfY;
|
|
|
|
halfSecHalfTheta *= 1.5f - halfY * halfSecHalfTheta * halfSecHalfTheta;
|
|
|
|
versHalfTheta = 1.0f - halfY * halfSecHalfTheta;
|
|
|
|
|
|
|
|
// Evaluate series expansions of the coefficients.
|
|
|
|
sqNotU = f1 * f1;
|
|
|
|
ratio2 = 0.0000440917108f * versHalfTheta;
|
|
|
|
ratio1 = -0.00158730159f + (sqNotU - 16.0f) * ratio2;
|
|
|
|
ratio1 = 0.0333333333f + ratio1 * (sqNotU - 9.0f) * versHalfTheta;
|
|
|
|
ratio1 = -0.333333333f + ratio1 * (sqNotU - 4.0f) * versHalfTheta;
|
|
|
|
ratio1 = 1.0f + ratio1 * (sqNotU - 1.0f) * versHalfTheta;
|
|
|
|
|
|
|
|
sqU = u * u;
|
|
|
|
ratio2 = -0.00158730159f + (sqU - 16.0f) * ratio2;
|
|
|
|
ratio2 = 0.0333333333f + ratio2 * (sqU - 9.0f) * versHalfTheta;
|
|
|
|
ratio2 = -0.333333333f + ratio2 * (sqU - 4.0f) * versHalfTheta;
|
|
|
|
ratio2 = 1.0f + ratio2 * (sqU - 1.0f) * versHalfTheta;
|
|
|
|
|
|
|
|
// Perform the bisection and resolve the folding done earlier.
|
|
|
|
f1 *= ratio1 * halfSecHalfTheta;
|
|
|
|
f2a *= ratio2;
|
|
|
|
f2b *= ratio2;
|
|
|
|
alpha *= f1 + f2a;
|
|
|
|
beta = f1 + f2b;
|
|
|
|
|
|
|
|
// Apply final coefficients to a and b as usual.
|
|
|
|
float w = alpha * q1w + beta * q2w;
|
|
|
|
float x = alpha * q1x + beta * q2x;
|
|
|
|
float y = alpha * q1y + beta * q2y;
|
|
|
|
float z = alpha * q1z + beta * q2z;
|
|
|
|
|
|
|
|
// This final adjustment to the quaternion's length corrects for
|
|
|
|
// any small constraint error in the inputs q1 and q2 But as you
|
|
|
|
// can see, it comes at the cost of 9 additional multiplication
|
|
|
|
// operations. If this error-correcting feature is not required,
|
|
|
|
// the following code may be removed.
|
|
|
|
f1 = 1.5f - 0.5f * (w * w + x * x + y * y + z * z);
|
|
|
|
*dstw = w * f1;
|
|
|
|
*dstx = x * f1;
|
|
|
|
*dsty = y * f1;
|
|
|
|
*dstz = z * f1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Quaternion::slerpForSquad(const Quaternion& q1, const Quaternion& q2, float t, Quaternion* dst)
|
|
|
|
{
|
|
|
|
GP_ASSERT(dst);
|
|
|
|
|
|
|
|
// cos(omega) = q1 * q2;
|
|
|
|
// slerp(q1, q2, t) = (q1*sin((1-t)*omega) + q2*sin(t*omega))/sin(omega);
|
|
|
|
// q1 = +- q2, slerp(q1,q2,t) = q1.
|
|
|
|
// This is a straight-forward implementation of the formula of slerp. It does not do any sign switching.
|
|
|
|
float c = q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w;
|
|
|
|
|
|
|
|
if (fabs(c) >= 1.0f)
|
|
|
|
{
|
|
|
|
dst->x = q1.x;
|
|
|
|
dst->y = q1.y;
|
|
|
|
dst->z = q1.z;
|
|
|
|
dst->w = q1.w;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
float omega = acos(c);
|
|
|
|
float s = sqrt(1.0f - c * c);
|
|
|
|
if (fabs(s) <= 0.00001f)
|
|
|
|
{
|
|
|
|
dst->x = q1.x;
|
|
|
|
dst->y = q1.y;
|
|
|
|
dst->z = q1.z;
|
|
|
|
dst->w = q1.w;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
float r1 = sin((1 - t) * omega) / s;
|
|
|
|
float r2 = sin(t * omega) / s;
|
|
|
|
dst->x = (q1.x * r1 + q2.x * r2);
|
|
|
|
dst->y = (q1.y * r1 + q2.y * r2);
|
|
|
|
dst->z = (q1.z * r1 + q2.z * r2);
|
|
|
|
dst->w = (q1.w * r1 + q2.w * r2);
|
|
|
|
}
|
|
|
|
|
2014-04-02 12:09:51 +08:00
|
|
|
NS_CC_MATH_END
|