mirror of https://github.com/axmolengine/axmol.git
301 lines
7.7 KiB
C++
301 lines
7.7 KiB
C++
|
// ----------------------------------------------------------------------------
|
||
|
// This confidential and proprietary software may be used only as authorised
|
||
|
// by a licensing agreement from Arm Limited.
|
||
|
// (C) COPYRIGHT 2011-2019 Arm Limited, ALL RIGHTS RESERVED
|
||
|
// The entire notice above must be reproduced on all authorised copies and
|
||
|
// copies may only be made to the extent permitted by a licensing agreement
|
||
|
// from Arm Limited.
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* @brief Functions for generating partition tables on demand.
|
||
|
*/
|
||
|
|
||
|
#include "astc_codec_internals.h"
|
||
|
|
||
|
static partition_info **partition_tables[4096];
|
||
|
|
||
|
/*
|
||
|
Produce a canonicalized representation of a partition pattern
|
||
|
|
||
|
The largest possible such representation is 432 bits, equal to 7 uint64_t values.
|
||
|
*/
|
||
|
static void gen_canonicalized_partition_table(int texel_count, const uint8_t * partition_table, uint64_t canonicalized[7])
|
||
|
{
|
||
|
int i;
|
||
|
for (i = 0; i < 7; i++)
|
||
|
canonicalized[i] = 0;
|
||
|
|
||
|
int mapped_index[4];
|
||
|
int map_weight_count = 0;
|
||
|
for (i = 0; i < 4; i++)
|
||
|
mapped_index[i] = -1;
|
||
|
|
||
|
for (i = 0; i < texel_count; i++)
|
||
|
{
|
||
|
int index = partition_table[i];
|
||
|
if (mapped_index[index] == -1)
|
||
|
mapped_index[index] = map_weight_count++;
|
||
|
uint64_t xlat_index = mapped_index[index];
|
||
|
canonicalized[i >> 5] |= xlat_index << (2 * (i & 0x1F));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int compare_canonicalized_partition_tables(const uint64_t part1[7], const uint64_t part2[7])
|
||
|
{
|
||
|
if (part1[0] != part2[0])
|
||
|
return 0;
|
||
|
if (part1[1] != part2[1])
|
||
|
return 0;
|
||
|
if (part1[2] != part2[2])
|
||
|
return 0;
|
||
|
if (part1[3] != part2[3])
|
||
|
return 0;
|
||
|
if (part1[4] != part2[4])
|
||
|
return 0;
|
||
|
if (part1[5] != part2[5])
|
||
|
return 0;
|
||
|
if (part1[6] != part2[6])
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
For a partition table, detect partitionss that are equivalent, then mark them as invalid. This reduces the number of partitions that the codec has to consider and thus improves encode
|
||
|
performance. */
|
||
|
static void partition_table_zap_equal_elements(int xdim, int ydim, int zdim, partition_info * pi)
|
||
|
{
|
||
|
int partition_tables_zapped = 0;
|
||
|
|
||
|
int texel_count = xdim * ydim * zdim;
|
||
|
|
||
|
int i, j;
|
||
|
uint64_t *canonicalizeds = new uint64_t[PARTITION_COUNT * 7];
|
||
|
|
||
|
|
||
|
for (i = 0; i < PARTITION_COUNT; i++)
|
||
|
{
|
||
|
gen_canonicalized_partition_table(texel_count, pi[i].partition_of_texel, canonicalizeds + i * 7);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < PARTITION_COUNT; i++)
|
||
|
{
|
||
|
for (j = 0; j < i; j++)
|
||
|
{
|
||
|
if (compare_canonicalized_partition_tables(canonicalizeds + 7 * i, canonicalizeds + 7 * j))
|
||
|
{
|
||
|
pi[i].partition_count = 0;
|
||
|
partition_tables_zapped++;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
delete[]canonicalizeds;
|
||
|
}
|
||
|
|
||
|
uint32_t hash52(uint32_t inp)
|
||
|
{
|
||
|
inp ^= inp >> 15;
|
||
|
|
||
|
inp *= 0xEEDE0891; // (2^4+1)*(2^7+1)*(2^17-1)
|
||
|
inp ^= inp >> 5;
|
||
|
inp += inp << 16;
|
||
|
inp ^= inp >> 7;
|
||
|
inp ^= inp >> 3;
|
||
|
inp ^= inp << 6;
|
||
|
inp ^= inp >> 17;
|
||
|
return inp;
|
||
|
}
|
||
|
|
||
|
int select_partition(int seed, int x, int y, int z, int partitioncount, int small_block)
|
||
|
{
|
||
|
if (small_block)
|
||
|
{
|
||
|
x <<= 1;
|
||
|
y <<= 1;
|
||
|
z <<= 1;
|
||
|
}
|
||
|
|
||
|
seed += (partitioncount - 1) * 1024;
|
||
|
|
||
|
uint32_t rnum = hash52(seed);
|
||
|
|
||
|
uint8_t seed1 = rnum & 0xF;
|
||
|
uint8_t seed2 = (rnum >> 4) & 0xF;
|
||
|
uint8_t seed3 = (rnum >> 8) & 0xF;
|
||
|
uint8_t seed4 = (rnum >> 12) & 0xF;
|
||
|
uint8_t seed5 = (rnum >> 16) & 0xF;
|
||
|
uint8_t seed6 = (rnum >> 20) & 0xF;
|
||
|
uint8_t seed7 = (rnum >> 24) & 0xF;
|
||
|
uint8_t seed8 = (rnum >> 28) & 0xF;
|
||
|
uint8_t seed9 = (rnum >> 18) & 0xF;
|
||
|
uint8_t seed10 = (rnum >> 22) & 0xF;
|
||
|
uint8_t seed11 = (rnum >> 26) & 0xF;
|
||
|
uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
|
||
|
|
||
|
// squaring all the seeds in order to bias their distribution
|
||
|
// towards lower values.
|
||
|
seed1 *= seed1;
|
||
|
seed2 *= seed2;
|
||
|
seed3 *= seed3;
|
||
|
seed4 *= seed4;
|
||
|
seed5 *= seed5;
|
||
|
seed6 *= seed6;
|
||
|
seed7 *= seed7;
|
||
|
seed8 *= seed8;
|
||
|
seed9 *= seed9;
|
||
|
seed10 *= seed10;
|
||
|
seed11 *= seed11;
|
||
|
seed12 *= seed12;
|
||
|
|
||
|
int sh1, sh2, sh3;
|
||
|
if (seed & 1)
|
||
|
{
|
||
|
sh1 = (seed & 2 ? 4 : 5);
|
||
|
sh2 = (partitioncount == 3 ? 6 : 5);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sh1 = (partitioncount == 3 ? 6 : 5);
|
||
|
sh2 = (seed & 2 ? 4 : 5);
|
||
|
}
|
||
|
sh3 = (seed & 0x10) ? sh1 : sh2;
|
||
|
|
||
|
seed1 >>= sh1;
|
||
|
seed2 >>= sh2;
|
||
|
seed3 >>= sh1;
|
||
|
seed4 >>= sh2;
|
||
|
seed5 >>= sh1;
|
||
|
seed6 >>= sh2;
|
||
|
seed7 >>= sh1;
|
||
|
seed8 >>= sh2;
|
||
|
|
||
|
seed9 >>= sh3;
|
||
|
seed10 >>= sh3;
|
||
|
seed11 >>= sh3;
|
||
|
seed12 >>= sh3;
|
||
|
|
||
|
int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
|
||
|
int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
|
||
|
int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
|
||
|
int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
|
||
|
|
||
|
// apply the saw
|
||
|
a &= 0x3F;
|
||
|
b &= 0x3F;
|
||
|
c &= 0x3F;
|
||
|
d &= 0x3F;
|
||
|
|
||
|
// remove some of the components if we are to output < 4 partitions.
|
||
|
if (partitioncount <= 3)
|
||
|
d = 0;
|
||
|
if (partitioncount <= 2)
|
||
|
c = 0;
|
||
|
if (partitioncount <= 1)
|
||
|
b = 0;
|
||
|
|
||
|
int partition;
|
||
|
if (a >= b && a >= c && a >= d)
|
||
|
partition = 0;
|
||
|
else if (b >= c && b >= d)
|
||
|
partition = 1;
|
||
|
else if (c >= d)
|
||
|
partition = 2;
|
||
|
else
|
||
|
partition = 3;
|
||
|
return partition;
|
||
|
}
|
||
|
|
||
|
void generate_one_partition_table(int xdim, int ydim, int zdim, int partition_count, int partition_index, partition_info * pt)
|
||
|
{
|
||
|
int small_block = (xdim * ydim * zdim) < 32;
|
||
|
|
||
|
uint8_t *partition_of_texel = pt->partition_of_texel;
|
||
|
int x, y, z, i;
|
||
|
|
||
|
for (z = 0; z < zdim; z++)
|
||
|
for (y = 0; y < ydim; y++)
|
||
|
for (x = 0; x < xdim; x++)
|
||
|
{
|
||
|
uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block);
|
||
|
*partition_of_texel++ = part;
|
||
|
}
|
||
|
|
||
|
int texels_per_block = xdim * ydim * zdim;
|
||
|
|
||
|
int counts[4];
|
||
|
for (i = 0; i < 4; i++)
|
||
|
counts[i] = 0;
|
||
|
|
||
|
for (i = 0; i < texels_per_block; i++)
|
||
|
{
|
||
|
int partition = pt->partition_of_texel[i];
|
||
|
pt->texels_of_partition[partition][counts[partition]++] = i;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++)
|
||
|
pt->texels_per_partition[i] = counts[i];
|
||
|
|
||
|
if (counts[0] == 0)
|
||
|
pt->partition_count = 0;
|
||
|
else if (counts[1] == 0)
|
||
|
pt->partition_count = 1;
|
||
|
else if (counts[2] == 0)
|
||
|
pt->partition_count = 2;
|
||
|
else if (counts[3] == 0)
|
||
|
pt->partition_count = 3;
|
||
|
else
|
||
|
pt->partition_count = 4;
|
||
|
|
||
|
for (i = 0; i < 4; i++)
|
||
|
pt->coverage_bitmaps[i] = 0ULL;
|
||
|
|
||
|
const block_size_descriptor *bsd = get_block_size_descriptor(xdim, ydim, zdim);
|
||
|
int texels_to_process = bsd->texelcount_for_bitmap_partitioning;
|
||
|
for (i = 0; i < texels_to_process; i++)
|
||
|
{
|
||
|
int idx = bsd->texels_for_bitmap_partitioning[i];
|
||
|
pt->coverage_bitmaps[pt->partition_of_texel[idx]] |= 1ULL << i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void generate_partition_tables(int xdim, int ydim, int zdim)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
partition_info *one_partition = new partition_info;
|
||
|
partition_info *two_partitions = new partition_info[1024];
|
||
|
partition_info *three_partitions = new partition_info[1024];
|
||
|
partition_info *four_partitions = new partition_info[1024];
|
||
|
|
||
|
partition_info **partition_table = new partition_info *[5];
|
||
|
partition_table[0] = NULL;
|
||
|
partition_table[1] = one_partition;
|
||
|
partition_table[2] = two_partitions;
|
||
|
partition_table[3] = three_partitions;
|
||
|
partition_table[4] = four_partitions;
|
||
|
|
||
|
generate_one_partition_table(xdim, ydim, zdim, 1, 0, one_partition);
|
||
|
for (i = 0; i < 1024; i++)
|
||
|
{
|
||
|
generate_one_partition_table(xdim, ydim, zdim, 2, i, two_partitions + i);
|
||
|
generate_one_partition_table(xdim, ydim, zdim, 3, i, three_partitions + i);
|
||
|
generate_one_partition_table(xdim, ydim, zdim, 4, i, four_partitions + i);
|
||
|
}
|
||
|
|
||
|
partition_table_zap_equal_elements(xdim, ydim, zdim, two_partitions);
|
||
|
partition_table_zap_equal_elements(xdim, ydim, zdim, three_partitions);
|
||
|
partition_table_zap_equal_elements(xdim, ydim, zdim, four_partitions);
|
||
|
|
||
|
partition_tables[xdim + 16 * ydim + 256 * zdim] = partition_table;
|
||
|
}
|
||
|
|
||
|
const partition_info *get_partition_table(int xdim, int ydim, int zdim, int partition_count)
|
||
|
{
|
||
|
int ptindex = xdim + 16 * ydim + 256 * zdim;
|
||
|
if (partition_tables[ptindex] == NULL)
|
||
|
generate_partition_tables(xdim, ydim, zdim);
|
||
|
|
||
|
return partition_tables[ptindex][partition_count];
|
||
|
}
|