mirror of https://github.com/axmolengine/axmol.git
215 lines
7.8 KiB
C
215 lines
7.8 KiB
C
|
/*
|
||
|
* jfdctfst-neon.c - fast integer FDCT (Arm Neon)
|
||
|
*
|
||
|
* Copyright (C) 2020, Arm Limited. All Rights Reserved.
|
||
|
*
|
||
|
* This software is provided 'as-is', without any express or implied
|
||
|
* warranty. In no event will the authors be held liable for any damages
|
||
|
* arising from the use of this software.
|
||
|
*
|
||
|
* Permission is granted to anyone to use this software for any purpose,
|
||
|
* including commercial applications, and to alter it and redistribute it
|
||
|
* freely, subject to the following restrictions:
|
||
|
*
|
||
|
* 1. The origin of this software must not be misrepresented; you must not
|
||
|
* claim that you wrote the original software. If you use this software
|
||
|
* in a product, an acknowledgment in the product documentation would be
|
||
|
* appreciated but is not required.
|
||
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
||
|
* misrepresented as being the original software.
|
||
|
* 3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
#define JPEG_INTERNALS
|
||
|
#include "../../jinclude.h"
|
||
|
#include "../../jpeglib.h"
|
||
|
#include "../../jsimd.h"
|
||
|
#include "../../jdct.h"
|
||
|
#include "../../jsimddct.h"
|
||
|
#include "../jsimd.h"
|
||
|
#include "align.h"
|
||
|
|
||
|
#include <arm_neon.h>
|
||
|
|
||
|
|
||
|
/* jsimd_fdct_ifast_neon() performs a fast, not so accurate forward DCT
|
||
|
* (Discrete Cosine Transform) on one block of samples. It uses the same
|
||
|
* calculations and produces exactly the same output as IJG's original
|
||
|
* jpeg_fdct_ifast() function, which can be found in jfdctfst.c.
|
||
|
*
|
||
|
* Scaled integer constants are used to avoid floating-point arithmetic:
|
||
|
* 0.382683433 = 12544 * 2^-15
|
||
|
* 0.541196100 = 17795 * 2^-15
|
||
|
* 0.707106781 = 23168 * 2^-15
|
||
|
* 0.306562965 = 9984 * 2^-15
|
||
|
*
|
||
|
* See jfdctfst.c for further details of the DCT algorithm. Where possible,
|
||
|
* the variable names and comments here in jsimd_fdct_ifast_neon() match up
|
||
|
* with those in jpeg_fdct_ifast().
|
||
|
*/
|
||
|
|
||
|
#define F_0_382 12544
|
||
|
#define F_0_541 17792
|
||
|
#define F_0_707 23168
|
||
|
#define F_0_306 9984
|
||
|
|
||
|
|
||
|
ALIGN(16) static const int16_t jsimd_fdct_ifast_neon_consts[] = {
|
||
|
F_0_382, F_0_541, F_0_707, F_0_306
|
||
|
};
|
||
|
|
||
|
void jsimd_fdct_ifast_neon(DCTELEM *data)
|
||
|
{
|
||
|
/* Load an 8x8 block of samples into Neon registers. De-interleaving loads
|
||
|
* are used, followed by vuzp to transpose the block such that we have a
|
||
|
* column of samples per vector - allowing all rows to be processed at once.
|
||
|
*/
|
||
|
int16x8x4_t data1 = vld4q_s16(data);
|
||
|
int16x8x4_t data2 = vld4q_s16(data + 4 * DCTSIZE);
|
||
|
|
||
|
int16x8x2_t cols_04 = vuzpq_s16(data1.val[0], data2.val[0]);
|
||
|
int16x8x2_t cols_15 = vuzpq_s16(data1.val[1], data2.val[1]);
|
||
|
int16x8x2_t cols_26 = vuzpq_s16(data1.val[2], data2.val[2]);
|
||
|
int16x8x2_t cols_37 = vuzpq_s16(data1.val[3], data2.val[3]);
|
||
|
|
||
|
int16x8_t col0 = cols_04.val[0];
|
||
|
int16x8_t col1 = cols_15.val[0];
|
||
|
int16x8_t col2 = cols_26.val[0];
|
||
|
int16x8_t col3 = cols_37.val[0];
|
||
|
int16x8_t col4 = cols_04.val[1];
|
||
|
int16x8_t col5 = cols_15.val[1];
|
||
|
int16x8_t col6 = cols_26.val[1];
|
||
|
int16x8_t col7 = cols_37.val[1];
|
||
|
|
||
|
/* Pass 1: process rows. */
|
||
|
|
||
|
/* Load DCT conversion constants. */
|
||
|
const int16x4_t consts = vld1_s16(jsimd_fdct_ifast_neon_consts);
|
||
|
|
||
|
int16x8_t tmp0 = vaddq_s16(col0, col7);
|
||
|
int16x8_t tmp7 = vsubq_s16(col0, col7);
|
||
|
int16x8_t tmp1 = vaddq_s16(col1, col6);
|
||
|
int16x8_t tmp6 = vsubq_s16(col1, col6);
|
||
|
int16x8_t tmp2 = vaddq_s16(col2, col5);
|
||
|
int16x8_t tmp5 = vsubq_s16(col2, col5);
|
||
|
int16x8_t tmp3 = vaddq_s16(col3, col4);
|
||
|
int16x8_t tmp4 = vsubq_s16(col3, col4);
|
||
|
|
||
|
/* Even part */
|
||
|
int16x8_t tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */
|
||
|
int16x8_t tmp13 = vsubq_s16(tmp0, tmp3);
|
||
|
int16x8_t tmp11 = vaddq_s16(tmp1, tmp2);
|
||
|
int16x8_t tmp12 = vsubq_s16(tmp1, tmp2);
|
||
|
|
||
|
col0 = vaddq_s16(tmp10, tmp11); /* phase 3 */
|
||
|
col4 = vsubq_s16(tmp10, tmp11);
|
||
|
|
||
|
int16x8_t z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2);
|
||
|
col2 = vaddq_s16(tmp13, z1); /* phase 5 */
|
||
|
col6 = vsubq_s16(tmp13, z1);
|
||
|
|
||
|
/* Odd part */
|
||
|
tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */
|
||
|
tmp11 = vaddq_s16(tmp5, tmp6);
|
||
|
tmp12 = vaddq_s16(tmp6, tmp7);
|
||
|
|
||
|
int16x8_t z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0);
|
||
|
int16x8_t z2 = vqdmulhq_lane_s16(tmp10, consts, 1);
|
||
|
z2 = vaddq_s16(z2, z5);
|
||
|
int16x8_t z4 = vqdmulhq_lane_s16(tmp12, consts, 3);
|
||
|
z5 = vaddq_s16(tmp12, z5);
|
||
|
z4 = vaddq_s16(z4, z5);
|
||
|
int16x8_t z3 = vqdmulhq_lane_s16(tmp11, consts, 2);
|
||
|
|
||
|
int16x8_t z11 = vaddq_s16(tmp7, z3); /* phase 5 */
|
||
|
int16x8_t z13 = vsubq_s16(tmp7, z3);
|
||
|
|
||
|
col5 = vaddq_s16(z13, z2); /* phase 6 */
|
||
|
col3 = vsubq_s16(z13, z2);
|
||
|
col1 = vaddq_s16(z11, z4);
|
||
|
col7 = vsubq_s16(z11, z4);
|
||
|
|
||
|
/* Transpose to work on columns in pass 2. */
|
||
|
int16x8x2_t cols_01 = vtrnq_s16(col0, col1);
|
||
|
int16x8x2_t cols_23 = vtrnq_s16(col2, col3);
|
||
|
int16x8x2_t cols_45 = vtrnq_s16(col4, col5);
|
||
|
int16x8x2_t cols_67 = vtrnq_s16(col6, col7);
|
||
|
|
||
|
int32x4x2_t cols_0145_l = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[0]),
|
||
|
vreinterpretq_s32_s16(cols_45.val[0]));
|
||
|
int32x4x2_t cols_0145_h = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[1]),
|
||
|
vreinterpretq_s32_s16(cols_45.val[1]));
|
||
|
int32x4x2_t cols_2367_l = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[0]),
|
||
|
vreinterpretq_s32_s16(cols_67.val[0]));
|
||
|
int32x4x2_t cols_2367_h = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[1]),
|
||
|
vreinterpretq_s32_s16(cols_67.val[1]));
|
||
|
|
||
|
int32x4x2_t rows_04 = vzipq_s32(cols_0145_l.val[0], cols_2367_l.val[0]);
|
||
|
int32x4x2_t rows_15 = vzipq_s32(cols_0145_h.val[0], cols_2367_h.val[0]);
|
||
|
int32x4x2_t rows_26 = vzipq_s32(cols_0145_l.val[1], cols_2367_l.val[1]);
|
||
|
int32x4x2_t rows_37 = vzipq_s32(cols_0145_h.val[1], cols_2367_h.val[1]);
|
||
|
|
||
|
int16x8_t row0 = vreinterpretq_s16_s32(rows_04.val[0]);
|
||
|
int16x8_t row1 = vreinterpretq_s16_s32(rows_15.val[0]);
|
||
|
int16x8_t row2 = vreinterpretq_s16_s32(rows_26.val[0]);
|
||
|
int16x8_t row3 = vreinterpretq_s16_s32(rows_37.val[0]);
|
||
|
int16x8_t row4 = vreinterpretq_s16_s32(rows_04.val[1]);
|
||
|
int16x8_t row5 = vreinterpretq_s16_s32(rows_15.val[1]);
|
||
|
int16x8_t row6 = vreinterpretq_s16_s32(rows_26.val[1]);
|
||
|
int16x8_t row7 = vreinterpretq_s16_s32(rows_37.val[1]);
|
||
|
|
||
|
/* Pass 2: process columns. */
|
||
|
|
||
|
tmp0 = vaddq_s16(row0, row7);
|
||
|
tmp7 = vsubq_s16(row0, row7);
|
||
|
tmp1 = vaddq_s16(row1, row6);
|
||
|
tmp6 = vsubq_s16(row1, row6);
|
||
|
tmp2 = vaddq_s16(row2, row5);
|
||
|
tmp5 = vsubq_s16(row2, row5);
|
||
|
tmp3 = vaddq_s16(row3, row4);
|
||
|
tmp4 = vsubq_s16(row3, row4);
|
||
|
|
||
|
/* Even part */
|
||
|
tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */
|
||
|
tmp13 = vsubq_s16(tmp0, tmp3);
|
||
|
tmp11 = vaddq_s16(tmp1, tmp2);
|
||
|
tmp12 = vsubq_s16(tmp1, tmp2);
|
||
|
|
||
|
row0 = vaddq_s16(tmp10, tmp11); /* phase 3 */
|
||
|
row4 = vsubq_s16(tmp10, tmp11);
|
||
|
|
||
|
z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2);
|
||
|
row2 = vaddq_s16(tmp13, z1); /* phase 5 */
|
||
|
row6 = vsubq_s16(tmp13, z1);
|
||
|
|
||
|
/* Odd part */
|
||
|
tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */
|
||
|
tmp11 = vaddq_s16(tmp5, tmp6);
|
||
|
tmp12 = vaddq_s16(tmp6, tmp7);
|
||
|
|
||
|
z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0);
|
||
|
z2 = vqdmulhq_lane_s16(tmp10, consts, 1);
|
||
|
z2 = vaddq_s16(z2, z5);
|
||
|
z4 = vqdmulhq_lane_s16(tmp12, consts, 3);
|
||
|
z5 = vaddq_s16(tmp12, z5);
|
||
|
z4 = vaddq_s16(z4, z5);
|
||
|
z3 = vqdmulhq_lane_s16(tmp11, consts, 2);
|
||
|
|
||
|
z11 = vaddq_s16(tmp7, z3); /* phase 5 */
|
||
|
z13 = vsubq_s16(tmp7, z3);
|
||
|
|
||
|
row5 = vaddq_s16(z13, z2); /* phase 6 */
|
||
|
row3 = vsubq_s16(z13, z2);
|
||
|
row1 = vaddq_s16(z11, z4);
|
||
|
row7 = vsubq_s16(z11, z4);
|
||
|
|
||
|
vst1q_s16(data + 0 * DCTSIZE, row0);
|
||
|
vst1q_s16(data + 1 * DCTSIZE, row1);
|
||
|
vst1q_s16(data + 2 * DCTSIZE, row2);
|
||
|
vst1q_s16(data + 3 * DCTSIZE, row3);
|
||
|
vst1q_s16(data + 4 * DCTSIZE, row4);
|
||
|
vst1q_s16(data + 5 * DCTSIZE, row5);
|
||
|
vst1q_s16(data + 6 * DCTSIZE, row6);
|
||
|
vst1q_s16(data + 7 * DCTSIZE, row7);
|
||
|
}
|