axmol/external/jpeg/simd/i386/jidctflt-sse2.asm

498 lines
21 KiB
NASM
Raw Normal View History

2020-11-16 14:47:43 +08:00
;
; jidctflt.asm - floating-point IDCT (SSE & SSE2)
;
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
; Copyright (C) 2016, D. R. Commander.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains a floating-point implementation of the inverse DCT
; (Discrete Cosine Transform). The following code is based directly on
; the IJG's original jidctflt.c; see the jidctflt.c for more details.
%include "jsimdext.inc"
%include "jdct.inc"
; --------------------------------------------------------------------------
%macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5)
shufps %1, %2, 0x44
%endmacro
%macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7)
shufps %1, %2, 0xEE
%endmacro
; --------------------------------------------------------------------------
SECTION SEG_CONST
alignz 32
GLOBAL_DATA(jconst_idct_float_sse2)
EXTN(jconst_idct_float_sse2):
PD_1_414 times 4 dd 1.414213562373095048801689
PD_1_847 times 4 dd 1.847759065022573512256366
PD_1_082 times 4 dd 1.082392200292393968799446
PD_M2_613 times 4 dd -2.613125929752753055713286
PD_RNDINT_MAGIC times 4 dd 100663296.0 ; (float)(0x00C00000 << 3)
PB_CENTERJSAMP times 16 db CENTERJSAMPLE
alignz 32
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
;
; Perform dequantization and inverse DCT on one block of coefficients.
;
; GLOBAL(void)
; jsimd_idct_float_sse2(void *dct_table, JCOEFPTR coef_block,
; JSAMPARRAY output_buf, JDIMENSION output_col)
;
%define dct_table(b) (b) + 8 ; void *dct_table
%define coef_block(b) (b) + 12 ; JCOEFPTR coef_block
%define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf
%define output_col(b) (b) + 20 ; JDIMENSION output_col
%define original_ebp ebp + 0
%define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD
; xmmword wk[WK_NUM]
%define WK_NUM 2
%define workspace wk(0) - DCTSIZE2 * SIZEOF_FAST_FLOAT
; FAST_FLOAT workspace[DCTSIZE2]
align 32
GLOBAL_FUNCTION(jsimd_idct_float_sse2)
EXTN(jsimd_idct_float_sse2):
push ebp
mov eax, esp ; eax = original ebp
sub esp, byte 4
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
mov [esp], eax
mov ebp, esp ; ebp = aligned ebp
lea esp, [workspace]
push ebx
; push ecx ; need not be preserved
; push edx ; need not be preserved
push esi
push edi
get_GOT ebx ; get GOT address
; ---- Pass 1: process columns from input, store into work array.
; mov eax, [original_ebp]
mov edx, POINTER [dct_table(eax)] ; quantptr
mov esi, JCOEFPTR [coef_block(eax)] ; inptr
lea edi, [workspace] ; FAST_FLOAT *wsptr
mov ecx, DCTSIZE/4 ; ctr
alignx 16, 7
.columnloop:
%ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE
mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
jnz near .columnDCT
movq xmm1, XMM_MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
movq xmm2, XMM_MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
movq xmm3, XMM_MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
movq xmm4, XMM_MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
movq xmm5, XMM_MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
movq xmm6, XMM_MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
movq xmm7, XMM_MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
por xmm1, xmm2
por xmm3, xmm4
por xmm5, xmm6
por xmm1, xmm3
por xmm5, xmm7
por xmm1, xmm5
packsswb xmm1, xmm1
movd eax, xmm1
test eax, eax
jnz short .columnDCT
; -- AC terms all zero
movq xmm0, XMM_MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03)
psrad xmm0, (DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03)
cvtdq2ps xmm0, xmm0 ; xmm0=in0=(00 01 02 03)
mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
movaps xmm1, xmm0
movaps xmm2, xmm0
movaps xmm3, xmm0
shufps xmm0, xmm0, 0x00 ; xmm0=(00 00 00 00)
shufps xmm1, xmm1, 0x55 ; xmm1=(01 01 01 01)
shufps xmm2, xmm2, 0xAA ; xmm2=(02 02 02 02)
shufps xmm3, xmm3, 0xFF ; xmm3=(03 03 03 03)
movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0
movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0
movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1
movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1
movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2
movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2
movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3
movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3
jmp near .nextcolumn
alignx 16, 7
%endif
.columnDCT:
; -- Even part
movq xmm0, XMM_MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
movq xmm1, XMM_MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
movq xmm2, XMM_MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
movq xmm3, XMM_MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03)
punpcklwd xmm1, xmm1 ; xmm1=(20 20 21 21 22 22 23 23)
psrad xmm0, (DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03)
psrad xmm1, (DWORD_BIT-WORD_BIT) ; xmm1=in2=(20 21 22 23)
cvtdq2ps xmm0, xmm0 ; xmm0=in0=(00 01 02 03)
cvtdq2ps xmm1, xmm1 ; xmm1=in2=(20 21 22 23)
punpcklwd xmm2, xmm2 ; xmm2=(40 40 41 41 42 42 43 43)
punpcklwd xmm3, xmm3 ; xmm3=(60 60 61 61 62 62 63 63)
psrad xmm2, (DWORD_BIT-WORD_BIT) ; xmm2=in4=(40 41 42 43)
psrad xmm3, (DWORD_BIT-WORD_BIT) ; xmm3=in6=(60 61 62 63)
cvtdq2ps xmm2, xmm2 ; xmm2=in4=(40 41 42 43)
cvtdq2ps xmm3, xmm3 ; xmm3=in6=(60 61 62 63)
mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
movaps xmm4, xmm0
movaps xmm5, xmm1
subps xmm0, xmm2 ; xmm0=tmp11
subps xmm1, xmm3
addps xmm4, xmm2 ; xmm4=tmp10
addps xmm5, xmm3 ; xmm5=tmp13
mulps xmm1, [GOTOFF(ebx,PD_1_414)]
subps xmm1, xmm5 ; xmm1=tmp12
movaps xmm6, xmm4
movaps xmm7, xmm0
subps xmm4, xmm5 ; xmm4=tmp3
subps xmm0, xmm1 ; xmm0=tmp2
addps xmm6, xmm5 ; xmm6=tmp0
addps xmm7, xmm1 ; xmm7=tmp1
movaps XMMWORD [wk(1)], xmm4 ; tmp3
movaps XMMWORD [wk(0)], xmm0 ; tmp2
; -- Odd part
movq xmm2, XMM_MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
movq xmm3, XMM_MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
movq xmm5, XMM_MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
movq xmm1, XMM_MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
punpcklwd xmm2, xmm2 ; xmm2=(10 10 11 11 12 12 13 13)
punpcklwd xmm3, xmm3 ; xmm3=(30 30 31 31 32 32 33 33)
psrad xmm2, (DWORD_BIT-WORD_BIT) ; xmm2=in1=(10 11 12 13)
psrad xmm3, (DWORD_BIT-WORD_BIT) ; xmm3=in3=(30 31 32 33)
cvtdq2ps xmm2, xmm2 ; xmm2=in1=(10 11 12 13)
cvtdq2ps xmm3, xmm3 ; xmm3=in3=(30 31 32 33)
punpcklwd xmm5, xmm5 ; xmm5=(50 50 51 51 52 52 53 53)
punpcklwd xmm1, xmm1 ; xmm1=(70 70 71 71 72 72 73 73)
psrad xmm5, (DWORD_BIT-WORD_BIT) ; xmm5=in5=(50 51 52 53)
psrad xmm1, (DWORD_BIT-WORD_BIT) ; xmm1=in7=(70 71 72 73)
cvtdq2ps xmm5, xmm5 ; xmm5=in5=(50 51 52 53)
cvtdq2ps xmm1, xmm1 ; xmm1=in7=(70 71 72 73)
mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)]
movaps xmm4, xmm2
movaps xmm0, xmm5
addps xmm2, xmm1 ; xmm2=z11
addps xmm5, xmm3 ; xmm5=z13
subps xmm4, xmm1 ; xmm4=z12
subps xmm0, xmm3 ; xmm0=z10
movaps xmm1, xmm2
subps xmm2, xmm5
addps xmm1, xmm5 ; xmm1=tmp7
mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11
movaps xmm3, xmm0
addps xmm0, xmm4
mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5
mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930)
mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200)
addps xmm3, xmm0 ; xmm3=tmp12
subps xmm4, xmm0 ; xmm4=tmp10
; -- Final output stage
subps xmm3, xmm1 ; xmm3=tmp6
movaps xmm5, xmm6
movaps xmm0, xmm7
addps xmm6, xmm1 ; xmm6=data0=(00 01 02 03)
addps xmm7, xmm3 ; xmm7=data1=(10 11 12 13)
subps xmm5, xmm1 ; xmm5=data7=(70 71 72 73)
subps xmm0, xmm3 ; xmm0=data6=(60 61 62 63)
subps xmm2, xmm3 ; xmm2=tmp5
movaps xmm1, xmm6 ; transpose coefficients(phase 1)
unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11)
unpckhps xmm1, xmm7 ; xmm1=(02 12 03 13)
movaps xmm3, xmm0 ; transpose coefficients(phase 1)
unpcklps xmm0, xmm5 ; xmm0=(60 70 61 71)
unpckhps xmm3, xmm5 ; xmm3=(62 72 63 73)
movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2
movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3
movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71)
movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73)
addps xmm4, xmm2 ; xmm4=tmp4
movaps xmm0, xmm7
movaps xmm3, xmm5
addps xmm7, xmm2 ; xmm7=data2=(20 21 22 23)
addps xmm5, xmm4 ; xmm5=data4=(40 41 42 43)
subps xmm0, xmm2 ; xmm0=data5=(50 51 52 53)
subps xmm3, xmm4 ; xmm3=data3=(30 31 32 33)
movaps xmm2, xmm7 ; transpose coefficients(phase 1)
unpcklps xmm7, xmm3 ; xmm7=(20 30 21 31)
unpckhps xmm2, xmm3 ; xmm2=(22 32 23 33)
movaps xmm4, xmm5 ; transpose coefficients(phase 1)
unpcklps xmm5, xmm0 ; xmm5=(40 50 41 51)
unpckhps xmm4, xmm0 ; xmm4=(42 52 43 53)
movaps xmm3, xmm6 ; transpose coefficients(phase 2)
unpcklps2 xmm6, xmm7 ; xmm6=(00 10 20 30)
unpckhps2 xmm3, xmm7 ; xmm3=(01 11 21 31)
movaps xmm0, xmm1 ; transpose coefficients(phase 2)
unpcklps2 xmm1, xmm2 ; xmm1=(02 12 22 32)
unpckhps2 xmm0, xmm2 ; xmm0=(03 13 23 33)
movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71)
movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73)
movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6
movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3
movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1
movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0
movaps xmm6, xmm5 ; transpose coefficients(phase 2)
unpcklps2 xmm5, xmm7 ; xmm5=(40 50 60 70)
unpckhps2 xmm6, xmm7 ; xmm6=(41 51 61 71)
movaps xmm3, xmm4 ; transpose coefficients(phase 2)
unpcklps2 xmm4, xmm2 ; xmm4=(42 52 62 72)
unpckhps2 xmm3, xmm2 ; xmm3=(43 53 63 73)
movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5
movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6
movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4
movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3
.nextcolumn:
add esi, byte 4*SIZEOF_JCOEF ; coef_block
add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr
add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr
dec ecx ; ctr
jnz near .columnloop
; -- Prefetch the next coefficient block
prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32]
prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32]
prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32]
prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32]
; ---- Pass 2: process rows from work array, store into output array.
mov eax, [original_ebp]
lea esi, [workspace] ; FAST_FLOAT *wsptr
mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *)
mov eax, JDIMENSION [output_col(eax)]
mov ecx, DCTSIZE/4 ; ctr
alignx 16, 7
.rowloop:
; -- Even part
movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm4, xmm0
movaps xmm5, xmm1
subps xmm0, xmm2 ; xmm0=tmp11
subps xmm1, xmm3
addps xmm4, xmm2 ; xmm4=tmp10
addps xmm5, xmm3 ; xmm5=tmp13
mulps xmm1, [GOTOFF(ebx,PD_1_414)]
subps xmm1, xmm5 ; xmm1=tmp12
movaps xmm6, xmm4
movaps xmm7, xmm0
subps xmm4, xmm5 ; xmm4=tmp3
subps xmm0, xmm1 ; xmm0=tmp2
addps xmm6, xmm5 ; xmm6=tmp0
addps xmm7, xmm1 ; xmm7=tmp1
movaps XMMWORD [wk(1)], xmm4 ; tmp3
movaps XMMWORD [wk(0)], xmm0 ; tmp2
; -- Odd part
movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)]
movaps xmm4, xmm2
movaps xmm0, xmm5
addps xmm2, xmm1 ; xmm2=z11
addps xmm5, xmm3 ; xmm5=z13
subps xmm4, xmm1 ; xmm4=z12
subps xmm0, xmm3 ; xmm0=z10
movaps xmm1, xmm2
subps xmm2, xmm5
addps xmm1, xmm5 ; xmm1=tmp7
mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11
movaps xmm3, xmm0
addps xmm0, xmm4
mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5
mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930)
mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200)
addps xmm3, xmm0 ; xmm3=tmp12
subps xmm4, xmm0 ; xmm4=tmp10
; -- Final output stage
subps xmm3, xmm1 ; xmm3=tmp6
movaps xmm5, xmm6
movaps xmm0, xmm7
addps xmm6, xmm1 ; xmm6=data0=(00 10 20 30)
addps xmm7, xmm3 ; xmm7=data1=(01 11 21 31)
subps xmm5, xmm1 ; xmm5=data7=(07 17 27 37)
subps xmm0, xmm3 ; xmm0=data6=(06 16 26 36)
subps xmm2, xmm3 ; xmm2=tmp5
movaps xmm1, [GOTOFF(ebx,PD_RNDINT_MAGIC)] ; xmm1=[PD_RNDINT_MAGIC]
pcmpeqd xmm3, xmm3
psrld xmm3, WORD_BIT ; xmm3={0xFFFF 0x0000 0xFFFF 0x0000 ..}
addps xmm6, xmm1 ; xmm6=roundint(data0/8)=(00 ** 10 ** 20 ** 30 **)
addps xmm7, xmm1 ; xmm7=roundint(data1/8)=(01 ** 11 ** 21 ** 31 **)
addps xmm0, xmm1 ; xmm0=roundint(data6/8)=(06 ** 16 ** 26 ** 36 **)
addps xmm5, xmm1 ; xmm5=roundint(data7/8)=(07 ** 17 ** 27 ** 37 **)
pand xmm6, xmm3 ; xmm6=(00 -- 10 -- 20 -- 30 --)
pslld xmm7, WORD_BIT ; xmm7=(-- 01 -- 11 -- 21 -- 31)
pand xmm0, xmm3 ; xmm0=(06 -- 16 -- 26 -- 36 --)
pslld xmm5, WORD_BIT ; xmm5=(-- 07 -- 17 -- 27 -- 37)
por xmm6, xmm7 ; xmm6=(00 01 10 11 20 21 30 31)
por xmm0, xmm5 ; xmm0=(06 07 16 17 26 27 36 37)
movaps xmm1, XMMWORD [wk(0)] ; xmm1=tmp2
movaps xmm3, XMMWORD [wk(1)] ; xmm3=tmp3
addps xmm4, xmm2 ; xmm4=tmp4
movaps xmm7, xmm1
movaps xmm5, xmm3
addps xmm1, xmm2 ; xmm1=data2=(02 12 22 32)
addps xmm3, xmm4 ; xmm3=data4=(04 14 24 34)
subps xmm7, xmm2 ; xmm7=data5=(05 15 25 35)
subps xmm5, xmm4 ; xmm5=data3=(03 13 23 33)
movaps xmm2, [GOTOFF(ebx,PD_RNDINT_MAGIC)] ; xmm2=[PD_RNDINT_MAGIC]
pcmpeqd xmm4, xmm4
psrld xmm4, WORD_BIT ; xmm4={0xFFFF 0x0000 0xFFFF 0x0000 ..}
addps xmm3, xmm2 ; xmm3=roundint(data4/8)=(04 ** 14 ** 24 ** 34 **)
addps xmm7, xmm2 ; xmm7=roundint(data5/8)=(05 ** 15 ** 25 ** 35 **)
addps xmm1, xmm2 ; xmm1=roundint(data2/8)=(02 ** 12 ** 22 ** 32 **)
addps xmm5, xmm2 ; xmm5=roundint(data3/8)=(03 ** 13 ** 23 ** 33 **)
pand xmm3, xmm4 ; xmm3=(04 -- 14 -- 24 -- 34 --)
pslld xmm7, WORD_BIT ; xmm7=(-- 05 -- 15 -- 25 -- 35)
pand xmm1, xmm4 ; xmm1=(02 -- 12 -- 22 -- 32 --)
pslld xmm5, WORD_BIT ; xmm5=(-- 03 -- 13 -- 23 -- 33)
por xmm3, xmm7 ; xmm3=(04 05 14 15 24 25 34 35)
por xmm1, xmm5 ; xmm1=(02 03 12 13 22 23 32 33)
movdqa xmm2, [GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP]
packsswb xmm6, xmm3 ; xmm6=(00 01 10 11 20 21 30 31 04 05 14 15 24 25 34 35)
packsswb xmm1, xmm0 ; xmm1=(02 03 12 13 22 23 32 33 06 07 16 17 26 27 36 37)
paddb xmm6, xmm2
paddb xmm1, xmm2
movdqa xmm4, xmm6 ; transpose coefficients(phase 2)
punpcklwd xmm6, xmm1 ; xmm6=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33)
punpckhwd xmm4, xmm1 ; xmm4=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37)
movdqa xmm7, xmm6 ; transpose coefficients(phase 3)
punpckldq xmm6, xmm4 ; xmm6=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
punpckhdq xmm7, xmm4 ; xmm7=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
pshufd xmm5, xmm6, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07)
pshufd xmm3, xmm7, 0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27)
pushpic ebx ; save GOT address
mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
mov ebx, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6
movq XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE], xmm7
mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5
movq XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE], xmm3
poppic ebx ; restore GOT address
add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr
add edi, byte 4*SIZEOF_JSAMPROW
dec ecx ; ctr
jnz near .rowloop
pop edi
pop esi
; pop edx ; need not be preserved
; pop ecx ; need not be preserved
pop ebx
mov esp, ebp ; esp <- aligned ebp
pop esp ; esp <- original ebp
pop ebp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32