axmol/external/jpeg/simd/x86_64/jchuff-sse2.asm

583 lines
31 KiB
NASM
Raw Normal View History

2020-11-16 14:47:43 +08:00
;
; jchuff-sse2.asm - Huffman entropy encoding (64-bit SSE2)
;
; Copyright (C) 2009-2011, 2014-2016, 2019, D. R. Commander.
2020-11-16 14:47:43 +08:00
; Copyright (C) 2015, Matthieu Darbois.
; Copyright (C) 2018, Matthias Räncker.
2020-11-16 14:47:43 +08:00
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains an SSE2 implementation for Huffman coding of one block.
; The following code is based on jchuff.c; see jchuff.c for more details.
2020-11-16 14:47:43 +08:00
%include "jsimdext.inc"
struc working_state
.next_output_byte: resp 1 ; => next byte to write in buffer
.free_in_buffer: resp 1 ; # of byte spaces remaining in buffer
.cur.put_buffer.simd resq 1 ; current bit accumulation buffer
.cur.free_bits resd 1 ; # of bits available in it
.cur.last_dc_val resd 4 ; last DC coef for each component
.cinfo: resp 1 ; dump_buffer needs access to this
endstruc
struc c_derived_tbl
.ehufco: resd 256 ; code for each symbol
.ehufsi: resb 256 ; length of code for each symbol
; If no code has been allocated for a symbol S, ehufsi[S] contains 0
endstruc
2020-11-16 14:47:43 +08:00
; --------------------------------------------------------------------------
SECTION SEG_CONST
alignz 32
GLOBAL_DATA(jconst_huff_encode_one_block)
EXTN(jconst_huff_encode_one_block):
jpeg_mask_bits dd 0x0000, 0x0001, 0x0003, 0x0007
dd 0x000f, 0x001f, 0x003f, 0x007f
dd 0x00ff, 0x01ff, 0x03ff, 0x07ff
dd 0x0fff, 0x1fff, 0x3fff, 0x7fff
2020-11-16 14:47:43 +08:00
alignz 32
times 1 << 14 db 15
times 1 << 13 db 14
times 1 << 12 db 13
times 1 << 11 db 12
times 1 << 10 db 11
times 1 << 9 db 10
times 1 << 8 db 9
times 1 << 7 db 8
times 1 << 6 db 7
times 1 << 5 db 6
times 1 << 4 db 5
times 1 << 3 db 4
times 1 << 2 db 3
times 1 << 1 db 2
times 1 << 0 db 1
times 1 db 0
jpeg_nbits_table:
times 1 db 0
times 1 << 0 db 1
times 1 << 1 db 2
times 1 << 2 db 3
times 1 << 3 db 4
times 1 << 4 db 5
times 1 << 5 db 6
times 1 << 6 db 7
times 1 << 7 db 8
times 1 << 8 db 9
times 1 << 9 db 10
times 1 << 10 db 11
times 1 << 11 db 12
times 1 << 12 db 13
times 1 << 13 db 14
times 1 << 14 db 15
2020-11-16 14:47:43 +08:00
alignz 32
2020-11-16 14:47:43 +08:00
%define NBITS(x) nbits_base + x
%define MASK_BITS(x) NBITS((x) * 4) + (jpeg_mask_bits - jpeg_nbits_table)
2020-11-16 14:47:43 +08:00
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 64
2020-11-16 14:47:43 +08:00
; Shorthand used to describe SIMD operations:
; wN: xmmN treated as eight signed 16-bit values
; wN[i]: perform the same operation on all eight signed 16-bit values, i=0..7
; bN: xmmN treated as 16 unsigned 8-bit values
; bN[i]: perform the same operation on all 16 unsigned 8-bit values, i=0..15
; Contents of SIMD registers are shown in memory order.
2020-11-16 14:47:43 +08:00
; Fill the bit buffer to capacity with the leading bits from code, then output
; the bit buffer and put the remaining bits from code into the bit buffer.
;
; Usage:
; code - contains the bits to shift into the bit buffer (LSB-aligned)
; %1 - the label to which to jump when the macro completes
; %2 (optional) - extra instructions to execute after nbits has been set
;
; Upon completion, free_bits will be set to the number of remaining bits from
; code, and put_buffer will contain those remaining bits. temp and code will
; be clobbered.
;
; This macro encodes any 0xFF bytes as 0xFF 0x00, as does the EMIT_BYTE()
; macro in jchuff.c.
%macro EMIT_QWORD 1-2
add nbitsb, free_bitsb ; nbits += free_bits;
neg free_bitsb ; free_bits = -free_bits;
mov tempd, code ; temp = code;
shl put_buffer, nbitsb ; put_buffer <<= nbits;
mov nbitsb, free_bitsb ; nbits = free_bits;
neg free_bitsb ; free_bits = -free_bits;
shr tempd, nbitsb ; temp >>= nbits;
or tempq, put_buffer ; temp |= put_buffer;
movq xmm0, tempq ; xmm0.u64 = { temp, 0 };
bswap tempq ; temp = htonl(temp);
mov put_buffer, codeq ; put_buffer = code;
pcmpeqb xmm0, xmm1 ; b0[i] = (b0[i] == 0xFF ? 0xFF : 0);
%2
pmovmskb code, xmm0 ; code = 0; code |= ((b0[i] >> 7) << i);
mov qword [buffer], tempq ; memcpy(buffer, &temp, 8);
; (speculative; will be overwritten if
; code contains any 0xFF bytes)
add free_bitsb, 64 ; free_bits += 64;
add bufferp, 8 ; buffer += 8;
test code, code ; if (code == 0) /* No 0xFF bytes */
jz %1 ; return;
; Execute the equivalent of the EMIT_BYTE() macro in jchuff.c for all 8
; bytes in the qword.
cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF
mov byte [buffer-7], 0 ; buffer[-7] = 0;
sbb bufferp, 6 ; buffer -= (6 + (temp[0] < 0xFF ? 1 : 0));
mov byte [buffer], temph ; buffer[0] = temp[1];
cmp temph, 0xFF ; Set CF if temp[1] < 0xFF
mov byte [buffer+1], 0 ; buffer[1] = 0;
sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0));
shr tempq, 16 ; temp >>= 16;
mov byte [buffer], tempb ; buffer[0] = temp[0];
cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF
mov byte [buffer+1], 0 ; buffer[1] = 0;
sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0));
mov byte [buffer], temph ; buffer[0] = temp[1];
cmp temph, 0xFF ; Set CF if temp[1] < 0xFF
mov byte [buffer+1], 0 ; buffer[1] = 0;
sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0));
shr tempq, 16 ; temp >>= 16;
mov byte [buffer], tempb ; buffer[0] = temp[0];
cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF
mov byte [buffer+1], 0 ; buffer[1] = 0;
sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0));
mov byte [buffer], temph ; buffer[0] = temp[1];
cmp temph, 0xFF ; Set CF if temp[1] < 0xFF
mov byte [buffer+1], 0 ; buffer[1] = 0;
sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0));
shr tempd, 16 ; temp >>= 16;
mov byte [buffer], tempb ; buffer[0] = temp[0];
cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF
mov byte [buffer+1], 0 ; buffer[1] = 0;
sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0));
mov byte [buffer], temph ; buffer[0] = temp[1];
cmp temph, 0xFF ; Set CF if temp[1] < 0xFF
mov byte [buffer+1], 0 ; buffer[1] = 0;
sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0));
jmp %1 ; return;
2020-11-16 14:47:43 +08:00
%endmacro
;
; Encode a single block's worth of coefficients.
;
; GLOBAL(JOCTET *)
; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
; JCOEFPTR block, int last_dc_val,
; c_derived_tbl *dctbl, c_derived_tbl *actbl)
;
; NOTES:
; When shuffling data, we try to avoid pinsrw as much as possible, since it is
; slow on many CPUs. Its reciprocal throughput (issue latency) is 1 even on
; modern CPUs, so chains of pinsrw instructions (even with different outputs)
; can limit performance. pinsrw is a VectorPath instruction on AMD K8 and
; requires 2 µops (with memory operand) on Intel. In either case, only one
; pinsrw instruction can be decoded per cycle (and nothing else if they are
; back-to-back), so out-of-order execution cannot be used to work around long
; pinsrw chains (though for Sandy Bridge and later, this may be less of a
; problem if the code runs from the µop cache.)
;
; We use tzcnt instead of bsf without checking for support. The instruction is
; executed as bsf on CPUs that don't support tzcnt (encoding is equivalent to
; rep bsf.) The destination (first) operand of bsf (and tzcnt on some CPUs) is
; an input dependency (although the behavior is not formally defined, Intel
; CPUs usually leave the destination unmodified if the source is zero.) This
; can prevent out-of-order execution, so we clear the destination before
; invoking tzcnt.
;
; Initial register allocation
; rax - buffer
; rbx - temp
; rcx - nbits
; rdx - block --> free_bits
; rsi - nbits_base
; rdi - t
; rbp - code
; r8 - dctbl --> code_temp
; r9 - actbl
; r10 - state
; r11 - index
; r12 - put_buffer
%define buffer rax
%ifdef WIN64
%define bufferp rax
%else
%define bufferp raxp
%endif
%define tempq rbx
%define tempd ebx
%define tempb bl
%define temph bh
%define nbitsq rcx
%define nbits ecx
%define nbitsb cl
%define block rdx
%define nbits_base rsi
%define t rdi
%define td edi
%define codeq rbp
%define code ebp
%define dctbl r8
%define actbl r9
%define state r10
%define index r11
%define indexd r11d
%define put_buffer r12
%define put_bufferd r12d
; Step 1: Re-arrange input data according to jpeg_natural_order
; xx 01 02 03 04 05 06 07 xx 01 08 16 09 02 03 10
; 08 09 10 11 12 13 14 15 17 24 32 25 18 11 04 05
; 16 17 18 19 20 21 22 23 12 19 26 33 40 48 41 34
; 24 25 26 27 28 29 30 31 ==> 27 20 13 06 07 14 21 28
; 32 33 34 35 36 37 38 39 35 42 49 56 57 50 43 36
; 40 41 42 43 44 45 46 47 29 22 15 23 30 37 44 51
; 48 49 50 51 52 53 54 55 58 59 52 45 38 31 39 46
; 56 57 58 59 60 61 62 63 53 60 61 54 47 55 62 63
2020-11-16 14:47:43 +08:00
align 32
GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)
EXTN(jsimd_huff_encode_one_block_sse2):
%ifdef WIN64
; rcx = working_state *state
; rdx = JOCTET *buffer
; r8 = JCOEFPTR block
; r9 = int last_dc_val
; [rax+48] = c_derived_tbl *dctbl
; [rax+56] = c_derived_tbl *actbl
;X: X = code stream
mov buffer, rdx
mov block, r8
movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07
push rbx
2020-11-16 14:47:43 +08:00
push rbp
movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07
push rsi
push rdi
push r12
movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15
mov state, rcx
movsx code, word [block] ;Z: code = block[0];
pxor xmm4, xmm4 ;A: w4[i] = 0;
sub code, r9d ;Z: code -= last_dc_val;
mov dctbl, POINTER [rsp+6*8+4*8]
mov actbl, POINTER [rsp+6*8+5*8]
punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11
lea nbits_base, [rel jpeg_nbits_table]
add rsp, -DCTSIZE2 * SIZEOF_WORD
mov t, rsp
%else
; rdi = working_state *state
; rsi = JOCTET *buffer
; rdx = JCOEFPTR block
; rcx = int last_dc_val
; r8 = c_derived_tbl *dctbl
; r9 = c_derived_tbl *actbl
;X: X = code stream
movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07
2020-11-16 14:47:43 +08:00
push rbx
push rbp
movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07
push r12
mov state, rdi
mov buffer, rsi
movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15
movsx codeq, word [block] ;Z: code = block[0];
lea nbits_base, [rel jpeg_nbits_table]
pxor xmm4, xmm4 ;A: w4[i] = 0;
sub codeq, rcx ;Z: code -= last_dc_val;
punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11
lea t, [rsp - DCTSIZE2 * SIZEOF_WORD] ; use red zone for t_
2020-11-16 14:47:43 +08:00
%endif
2020-11-16 14:47:43 +08:00
pshuflw xmm0, xmm0, 11001001b ;A: w0 = 01 08 xx 09 02 03 10 11
pinsrw xmm0, word [block + 16 * SIZEOF_WORD], 2 ;A: w0 = 01 08 16 09 02 03 10 11
punpckhdq xmm3, xmm1 ;D: w3 = 04 05 12 13 06 07 14 15
punpcklqdq xmm1, xmm3 ;B: w1 = 08 09 10 11 04 05 12 13
pinsrw xmm0, word [block + 17 * SIZEOF_WORD], 7 ;A: w0 = 01 08 16 09 02 03 10 17
;A: (Row 0, offset 1)
pcmpgtw xmm4, xmm0 ;A: w4[i] = (w0[i] < 0 ? -1 : 0);
paddw xmm0, xmm4 ;A: w0[i] += w4[i];
movaps XMMWORD [t + 0 * SIZEOF_WORD], xmm0 ;A: t[i] = w0[i];
movq xmm2, qword [block + 24 * SIZEOF_WORD] ;B: w2 = 24 25 26 27 -- -- -- --
pshuflw xmm2, xmm2, 11011000b ;B: w2 = 24 26 25 27 -- -- -- --
pslldq xmm1, 1 * SIZEOF_WORD ;B: w1 = -- 08 09 10 11 04 05 12
movups xmm5, XMMWORD [block + 48 * SIZEOF_WORD] ;H: w5 = 48 49 50 51 52 53 54 55
movsd xmm1, xmm2 ;B: w1 = 24 26 25 27 11 04 05 12
punpcklqdq xmm2, xmm5 ;C: w2 = 24 26 25 27 48 49 50 51
pinsrw xmm1, word [block + 32 * SIZEOF_WORD], 1 ;B: w1 = 24 32 25 27 11 04 05 12
pxor xmm4, xmm4 ;A: w4[i] = 0;
psrldq xmm3, 2 * SIZEOF_WORD ;D: w3 = 12 13 06 07 14 15 -- --
pcmpeqw xmm0, xmm4 ;A: w0[i] = (w0[i] == 0 ? -1 : 0);
pinsrw xmm1, word [block + 18 * SIZEOF_WORD], 3 ;B: w1 = 24 32 25 18 11 04 05 12
; (Row 1, offset 1)
pcmpgtw xmm4, xmm1 ;B: w4[i] = (w1[i] < 0 ? -1 : 0);
paddw xmm1, xmm4 ;B: w1[i] += w4[i];
movaps XMMWORD [t + 8 * SIZEOF_WORD], xmm1 ;B: t[i+8] = w1[i];
pxor xmm4, xmm4 ;B: w4[i] = 0;
pcmpeqw xmm1, xmm4 ;B: w1[i] = (w1[i] == 0 ? -1 : 0);
packsswb xmm0, xmm1 ;AB: b0[i] = w0[i], b0[i+8] = w1[i]
; w/ signed saturation
pinsrw xmm3, word [block + 20 * SIZEOF_WORD], 0 ;D: w3 = 20 13 06 07 14 15 -- --
pinsrw xmm3, word [block + 21 * SIZEOF_WORD], 5 ;D: w3 = 20 13 06 07 14 21 -- --
pinsrw xmm3, word [block + 28 * SIZEOF_WORD], 6 ;D: w3 = 20 13 06 07 14 21 28 --
pinsrw xmm3, word [block + 35 * SIZEOF_WORD], 7 ;D: w3 = 20 13 06 07 14 21 28 35
; (Row 3, offset 1)
pcmpgtw xmm4, xmm3 ;D: w4[i] = (w3[i] < 0 ? -1 : 0);
paddw xmm3, xmm4 ;D: w3[i] += w4[i];
movaps XMMWORD [t + 24 * SIZEOF_WORD], xmm3 ;D: t[i+24] = w3[i];
pxor xmm4, xmm4 ;D: w4[i] = 0;
pcmpeqw xmm3, xmm4 ;D: w3[i] = (w3[i] == 0 ? -1 : 0);
pinsrw xmm2, word [block + 19 * SIZEOF_WORD], 0 ;C: w2 = 19 26 25 27 48 49 50 51
cmp code, 1 << 31 ;Z: Set CF if code < 0x80000000,
;Z: i.e. if code is positive
pinsrw xmm2, word [block + 33 * SIZEOF_WORD], 2 ;C: w2 = 19 26 33 27 48 49 50 51
pinsrw xmm2, word [block + 40 * SIZEOF_WORD], 3 ;C: w2 = 19 26 33 40 48 49 50 51
adc code, -1 ;Z: code += -1 + (code >= 0 ? 1 : 0);
pinsrw xmm2, word [block + 41 * SIZEOF_WORD], 5 ;C: w2 = 19 26 33 40 48 41 50 51
pinsrw xmm2, word [block + 34 * SIZEOF_WORD], 6 ;C: w2 = 19 26 33 40 48 41 34 51
movsxd codeq, code ;Z: sign extend code
pinsrw xmm2, word [block + 27 * SIZEOF_WORD], 7 ;C: w2 = 19 26 33 40 48 41 34 27
; (Row 2, offset 1)
pcmpgtw xmm4, xmm2 ;C: w4[i] = (w2[i] < 0 ? -1 : 0);
paddw xmm2, xmm4 ;C: w2[i] += w4[i];
movaps XMMWORD [t + 16 * SIZEOF_WORD], xmm2 ;C: t[i+16] = w2[i];
pxor xmm4, xmm4 ;C: w4[i] = 0;
pcmpeqw xmm2, xmm4 ;C: w2[i] = (w2[i] == 0 ? -1 : 0);
packsswb xmm2, xmm3 ;CD: b2[i] = w2[i], b2[i+8] = w3[i]
; w/ signed saturation
movzx nbitsq, byte [NBITS(codeq)] ;Z: nbits = JPEG_NBITS(code);
movdqa xmm3, xmm5 ;H: w3 = 48 49 50 51 52 53 54 55
pmovmskb tempd, xmm2 ;Z: temp = 0; temp |= ((b2[i] >> 7) << i);
pmovmskb put_bufferd, xmm0 ;Z: put_buffer = 0; put_buffer |= ((b0[i] >> 7) << i);
movups xmm0, XMMWORD [block + 56 * SIZEOF_WORD] ;H: w0 = 56 57 58 59 60 61 62 63
punpckhdq xmm3, xmm0 ;H: w3 = 52 53 60 61 54 55 62 63
shl tempd, 16 ;Z: temp <<= 16;
psrldq xmm3, 1 * SIZEOF_WORD ;H: w3 = 53 60 61 54 55 62 63 --
pxor xmm2, xmm2 ;H: w2[i] = 0;
or put_bufferd, tempd ;Z: put_buffer |= temp;
pshuflw xmm3, xmm3, 00111001b ;H: w3 = 60 61 54 53 55 62 63 --
movq xmm1, qword [block + 44 * SIZEOF_WORD] ;G: w1 = 44 45 46 47 -- -- -- --
unpcklps xmm5, xmm0 ;E: w5 = 48 49 56 57 50 51 58 59
pxor xmm0, xmm0 ;H: w0[i] = 0;
pinsrw xmm3, word [block + 47 * SIZEOF_WORD], 3 ;H: w3 = 60 61 54 47 55 62 63 --
; (Row 7, offset 1)
pcmpgtw xmm2, xmm3 ;H: w2[i] = (w3[i] < 0 ? -1 : 0);
paddw xmm3, xmm2 ;H: w3[i] += w2[i];
movaps XMMWORD [t + 56 * SIZEOF_WORD], xmm3 ;H: t[i+56] = w3[i];
movq xmm4, qword [block + 36 * SIZEOF_WORD] ;G: w4 = 36 37 38 39 -- -- -- --
pcmpeqw xmm3, xmm0 ;H: w3[i] = (w3[i] == 0 ? -1 : 0);
punpckldq xmm4, xmm1 ;G: w4 = 36 37 44 45 38 39 46 47
mov tempd, [dctbl + c_derived_tbl.ehufco + nbitsq * 4]
;Z: temp = dctbl->ehufco[nbits];
movdqa xmm1, xmm4 ;F: w1 = 36 37 44 45 38 39 46 47
psrldq xmm4, 1 * SIZEOF_WORD ;G: w4 = 37 44 45 38 39 46 47 --
shufpd xmm1, xmm5, 10b ;F: w1 = 36 37 44 45 50 51 58 59
and code, dword [MASK_BITS(nbitsq)] ;Z: code &= (1 << nbits) - 1;
pshufhw xmm4, xmm4, 11010011b ;G: w4 = 37 44 45 38 -- 39 46 --
pslldq xmm1, 1 * SIZEOF_WORD ;F: w1 = -- 36 37 44 45 50 51 58
shl tempq, nbitsb ;Z: temp <<= nbits;
pinsrw xmm4, word [block + 59 * SIZEOF_WORD], 0 ;G: w4 = 59 44 45 38 -- 39 46 --
pshufd xmm1, xmm1, 11011000b ;F: w1 = -- 36 45 50 37 44 51 58
pinsrw xmm4, word [block + 52 * SIZEOF_WORD], 1 ;G: w4 = 59 52 45 38 -- 39 46 --
or code, tempd ;Z: code |= temp;
movlps xmm1, qword [block + 20 * SIZEOF_WORD] ;F: w1 = 20 21 22 23 37 44 51 58
pinsrw xmm4, word [block + 31 * SIZEOF_WORD], 4 ;G: w4 = 59 52 45 38 31 39 46 --
pshuflw xmm1, xmm1, 01110010b ;F: w1 = 22 20 23 21 37 44 51 58
pinsrw xmm4, word [block + 53 * SIZEOF_WORD], 7 ;G: w4 = 59 52 45 38 31 39 46 53
; (Row 6, offset 1)
pxor xmm2, xmm2 ;G: w2[i] = 0;
pcmpgtw xmm0, xmm4 ;G: w0[i] = (w4[i] < 0 ? -1 : 0);
pinsrw xmm1, word [block + 15 * SIZEOF_WORD], 1 ;F: w1 = 22 15 23 21 37 44 51 58
paddw xmm4, xmm0 ;G: w4[i] += w0[i];
movaps XMMWORD [t + 48 * SIZEOF_WORD], xmm4 ;G: t[48+i] = w4[i];
pinsrw xmm1, word [block + 30 * SIZEOF_WORD], 3 ;F: w1 = 22 15 23 30 37 44 51 58
; (Row 5, offset 1)
pcmpeqw xmm4, xmm2 ;G: w4[i] = (w4[i] == 0 ? -1 : 0);
pinsrw xmm5, word [block + 42 * SIZEOF_WORD], 0 ;E: w5 = 42 49 56 57 50 51 58 59
packsswb xmm4, xmm3 ;GH: b4[i] = w4[i], b4[i+8] = w3[i]
; w/ signed saturation
pxor xmm0, xmm0 ;F: w0[i] = 0;
pinsrw xmm5, word [block + 43 * SIZEOF_WORD], 5 ;E: w5 = 42 49 56 57 50 43 58 59
pcmpgtw xmm2, xmm1 ;F: w2[i] = (w1[i] < 0 ? -1 : 0);
pmovmskb tempd, xmm4 ;Z: temp = 0; temp |= ((b4[i] >> 7) << i);
pinsrw xmm5, word [block + 36 * SIZEOF_WORD], 6 ;E: w5 = 42 49 56 57 50 43 36 59
paddw xmm1, xmm2 ;F: w1[i] += w2[i];
movaps XMMWORD [t + 40 * SIZEOF_WORD], xmm1 ;F: t[40+i] = w1[i];
pinsrw xmm5, word [block + 29 * SIZEOF_WORD], 7 ;E: w5 = 42 49 56 57 50 43 36 29
; (Row 4, offset 1)
%undef block
%define free_bitsq rdx
%define free_bitsd edx
%define free_bitsb dl
pcmpeqw xmm1, xmm0 ;F: w1[i] = (w1[i] == 0 ? -1 : 0);
shl tempq, 48 ;Z: temp <<= 48;
pxor xmm2, xmm2 ;E: w2[i] = 0;
pcmpgtw xmm0, xmm5 ;E: w0[i] = (w5[i] < 0 ? -1 : 0);
paddw xmm5, xmm0 ;E: w5[i] += w0[i];
or tempq, put_buffer ;Z: temp |= put_buffer;
movaps XMMWORD [t + 32 * SIZEOF_WORD], xmm5 ;E: t[32+i] = w5[i];
lea t, [dword t - 2] ;Z: t = &t[-1];
pcmpeqw xmm5, xmm2 ;E: w5[i] = (w5[i] == 0 ? -1 : 0);
packsswb xmm5, xmm1 ;EF: b5[i] = w5[i], b5[i+8] = w1[i]
; w/ signed saturation
add nbitsb, byte [dctbl + c_derived_tbl.ehufsi + nbitsq]
;Z: nbits += dctbl->ehufsi[nbits];
%undef dctbl
%define code_temp r8d
pmovmskb indexd, xmm5 ;Z: index = 0; index |= ((b5[i] >> 7) << i);
mov free_bitsd, [state+working_state.cur.free_bits]
;Z: free_bits = state->cur.free_bits;
pcmpeqw xmm1, xmm1 ;Z: b1[i] = 0xFF;
shl index, 32 ;Z: index <<= 32;
mov put_buffer, [state+working_state.cur.put_buffer.simd]
;Z: put_buffer = state->cur.put_buffer.simd;
or index, tempq ;Z: index |= temp;
not index ;Z: index = ~index;
sub free_bitsb, nbitsb ;Z: if ((free_bits -= nbits) >= 0)
jnl .ENTRY_SKIP_EMIT_CODE ;Z: goto .ENTRY_SKIP_EMIT_CODE;
align 16
.EMIT_CODE: ;Z: .EMIT_CODE:
EMIT_QWORD .BLOOP_COND ;Z: insert code, flush buffer, goto .BLOOP_COND
; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
align 16
.BRLOOP: ; do {
lea code_temp, [nbitsq - 16] ; code_temp = nbits - 16;
movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0xf0]
; nbits = actbl->ehufsi[0xf0];
mov code, [actbl + c_derived_tbl.ehufco + 0xf0 * 4]
; code = actbl->ehufco[0xf0];
sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0)
jle .EMIT_BRLOOP_CODE ; goto .EMIT_BRLOOP_CODE;
shl put_buffer, nbitsb ; put_buffer <<= nbits;
mov nbits, code_temp ; nbits = code_temp;
or put_buffer, codeq ; put_buffer |= code;
cmp nbits, 16 ; if (nbits <= 16)
jle .ERLOOP ; break;
jmp .BRLOOP ; } while (1);
; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
align 16
times 5 nop
.ENTRY_SKIP_EMIT_CODE: ; .ENTRY_SKIP_EMIT_CODE:
shl put_buffer, nbitsb ; put_buffer <<= nbits;
or put_buffer, codeq ; put_buffer |= code;
.BLOOP_COND: ; .BLOOP_COND:
test index, index ; if (index != 0)
jz .ELOOP ; {
.BLOOP: ; do {
xor nbits, nbits ; nbits = 0; /* kill tzcnt input dependency */
tzcnt nbitsq, index ; nbits = # of trailing 0 bits in index
inc nbits ; ++nbits;
lea t, [t + nbitsq * 2] ; t = &t[nbits];
shr index, nbitsb ; index >>= nbits;
.EMIT_BRLOOP_CODE_END: ; .EMIT_BRLOOP_CODE_END:
cmp nbits, 16 ; if (nbits > 16)
jg .BRLOOP ; goto .BRLOOP;
.ERLOOP: ; .ERLOOP:
movsx codeq, word [t] ; code = *t;
lea tempd, [nbitsq * 2] ; temp = nbits * 2;
movzx nbits, byte [NBITS(codeq)] ; nbits = JPEG_NBITS(code);
lea tempd, [nbitsq + tempq * 8] ; temp = temp * 8 + nbits;
mov code_temp, [actbl + c_derived_tbl.ehufco + (tempq - 16) * 4]
; code_temp = actbl->ehufco[temp-16];
shl code_temp, nbitsb ; code_temp <<= nbits;
and code, dword [MASK_BITS(nbitsq)] ; code &= (1 << nbits) - 1;
add nbitsb, [actbl + c_derived_tbl.ehufsi + (tempq - 16)]
; free_bits -= actbl->ehufsi[temp-16];
or code, code_temp ; code |= code_temp;
sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0)
jle .EMIT_CODE ; goto .EMIT_CODE;
shl put_buffer, nbitsb ; put_buffer <<= nbits;
or put_buffer, codeq ; put_buffer |= code;
test index, index
jnz .BLOOP ; } while (index != 0);
.ELOOP: ; } /* index != 0 */
sub td, esp ; t -= (WIN64: &t_[0], UNIX: &t_[64]);
%ifdef WIN64
cmp td, (DCTSIZE2 - 2) * SIZEOF_WORD ; if (t != 62)
%else
cmp td, -2 * SIZEOF_WORD ; if (t != -2)
%endif
je .EFN ; {
movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0]
; nbits = actbl->ehufsi[0];
mov code, [actbl + c_derived_tbl.ehufco + 0] ; code = actbl->ehufco[0];
sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0)
jg .EFN_SKIP_EMIT_CODE ; {
EMIT_QWORD .EFN ; insert code, flush buffer
align 16
.EFN_SKIP_EMIT_CODE: ; } else {
shl put_buffer, nbitsb ; put_buffer <<= nbits;
or put_buffer, codeq ; put_buffer |= code;
.EFN: ; } }
mov [state + working_state.cur.put_buffer.simd], put_buffer
; state->cur.put_buffer.simd = put_buffer;
mov byte [state + working_state.cur.free_bits], free_bitsb
; state->cur.free_bits = free_bits;
%ifdef WIN64
sub rsp, -DCTSIZE2 * SIZEOF_WORD
pop r12
pop rdi
pop rsi
pop rbp
2020-11-16 14:47:43 +08:00
pop rbx
%else
pop r12
2020-11-16 14:47:43 +08:00
pop rbp
pop rbx
%endif
2020-11-16 14:47:43 +08:00
ret
; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
align 16
.EMIT_BRLOOP_CODE:
EMIT_QWORD .EMIT_BRLOOP_CODE_END, { mov nbits, code_temp }
; insert code, flush buffer,
; nbits = code_temp, goto .EMIT_BRLOOP_CODE_END
2020-11-16 14:47:43 +08:00
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32