axmol/core/math/Vec4.h

509 lines
14 KiB
C
Raw Normal View History

2019-11-23 20:27:39 +08:00
/**
Copyright 2013 BlackBerry Inc.
Copyright (c) 2014-2017 Chukong Technologies
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
Copyright (c) 2019-present Axmol Engine contributors (see AUTHORS.md).
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original file from GamePlay3D: http://gameplay3d.org
This file was modified to fit the cocos2d-x project
*/
#ifndef MATH_VEC4_H
#define MATH_VEC4_H
2024-08-06 19:22:02 +08:00
#include "base/Macros.h"
#include "math/MathBase.h"
2019-11-23 20:27:39 +08:00
/**
* @addtogroup base
* @{
*/
NS_AX_MATH_BEGIN
2019-11-23 20:27:39 +08:00
class Mat4;
/*
* @brief A 4-floats class template with base math operators
2019-11-23 20:27:39 +08:00
*/
template <typename _ImplType>
class Vec4Base
2019-11-23 20:27:39 +08:00
{
public:
using impl_type = _ImplType;
constexpr Vec4Base() : x(0.0f), y(0.0f), z(0.0f), w(0.0f) {}
constexpr Vec4Base(float xx, float yy, float zz, float ww) : x(xx), y(yy), z(zz), w(ww) {}
constexpr explicit Vec4Base(const float* src) { this->set(src); }
2021-12-25 10:04:45 +08:00
union
{
struct
{
float x, y, z, w;
2019-11-23 20:27:39 +08:00
};
2024-03-14 01:10:56 +08:00
struct
{
float r, g, b, a;
};
struct
{
float h, s;
union
{
float v, l;
};
};
float comps[4];
2019-11-23 20:27:39 +08:00
};
impl_type& negate()
{
x = -x;
y = -y;
z = -z;
w = -w;
return *static_cast<impl_type*>(this);
}
impl_type& add(const impl_type& v)
{
x += v.x;
y += v.y;
z += v.z;
w += v.w;
return *static_cast<impl_type*>(this);
}
/**
* Subtracts this vector and the specified vector as (this - v)
* and stores the result in this vector.
*
* @param v The vector to subtract.
*/
impl_type& subtract(const impl_type& v)
{
x -= v.x;
y -= v.y;
z -= v.z;
w -= v.w;
return *static_cast<impl_type*>(this);
}
impl_type& scale(float scalar)
{
x *= scalar;
y *= scalar;
z *= scalar;
w *= scalar;
return *static_cast<impl_type*>(this);
}
/**
* Sets the elements of this vector to the specified values.
*
* @param xx The new x coordinate.
* @param yy The new y coordinate.
* @param zz The new z coordinate.
* @param ww The new w coordinate.
*/
constexpr void set(float xx, float yy, float zz, float ww)
{
this->x = xx;
this->y = yy;
this->z = zz;
this->w = ww;
}
/**
* Sets the elements of this vector from the values in the specified array.
*
* @param array An array containing the elements of the vector in the order x, y, z, w.
*/
void set(const float* array)
{
AX_ASSERT(array);
this->x = array[0];
this->y = array[1];
this->z = array[2];
this->w = array[3];
}
/**
* Sets the elements of this vector to those in the specified vector.
*
* @param v The vector to copy.
*/
void set(const impl_type& v)
{
this->x = v.x;
this->y = v.y;
this->z = v.z;
this->w = v.w;
}
inline impl_type& operator-() { return impl_type{*static_cast<impl_type*>(this)}.negate(); }
/**
* Adds the given vector to this vector.
*
* @param v The vector to add.
* @return This vector, after the addition occurs.
*/
inline impl_type& operator+=(const impl_type& v) { return this->add(v); }
/**
* Subtracts the given vector from this vector.
*
* @param v The vector to subtract.
* @return This vector, after the subtraction occurs.
*/
inline impl_type& operator-=(const impl_type& v) { return this->subtract(v); }
/**
* Scales this vector by the given value.
*
* @param s The value to scale by.
* @return This vector, after the scale occurs.
*/
inline impl_type& operator*=(float s)
{
scale(s);
return *static_cast<impl_type*>(this);
}
/**
* Scales this vector by the given value.
*
* @param s The value to scale by.
* @return This vector, after the scale occurs.
*/
inline impl_type& operator*=(const impl_type& s)
{
this->x *= s.x;
this->y *= s.y;
this->z *= s.z;
this->w *= s.w;
return *static_cast<impl_type*>(this);
}
/**
* Divide this vector by the given value.
*
* @param s The value to scale by.
* @return This vector, after the scale occurs.
*/
inline impl_type& operator/=(float s)
{
this->x /= s;
this->y /= s;
this->z /= s;
this->w /= s;
return *static_cast<impl_type*>(this);
}
/**
* Divide this vector by the given value.
*
* @param s The value to scale by.
* @return This vector, after the scale occurs.
*/
inline impl_type& operator/=(const impl_type& s)
{
this->x /= s.x;
this->y /= s.y;
this->z /= s.z;
this->w /= s.w;
return *static_cast<impl_type*>(this);
}
/**
* Determines if this vector is equal to the given vector.
*
* @param v The vector to compare against.
*
* @return True if this vector is equal to the given vector, false otherwise.
*/
friend inline bool operator==(const impl_type& lhs, const impl_type& rhs)
{
return lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z && lhs.w == rhs.w;
}
/**
* Determines if this vector is not equal to the given vector.
*
* @param v The vector to compare against.
*
* @return True if this vector is not equal to the given vector, false otherwise.
*/
friend inline bool operator!=(const impl_type& lhs, const impl_type& rhs)
{
return lhs.x != rhs.x || lhs.y != rhs.y || lhs.z != rhs.z || lhs.w != rhs.w;
}
friend inline impl_type operator+(const impl_type& lhs, const impl_type& rhs) { return impl_type{lhs} += rhs; }
friend inline impl_type operator-(const impl_type& lhs, const impl_type& rhs) { return impl_type{lhs} -= rhs; }
friend inline impl_type operator*(const impl_type& lhs, float s) { return impl_type{lhs} *= s; }
friend inline impl_type operator*(float x, const impl_type& v) { return impl_type{v} *= x; }
friend inline impl_type operator/(const impl_type& lhs, const float s) { return impl_type{lhs} /= s; }
};
/**
* Defines 4-element floating point vector.
*/
class AX_DLL Vec4 : public Vec4Base<Vec4>
{
using Vec4Base = Vec4Base<Vec4>;
public:
2019-11-23 20:27:39 +08:00
/**
* Constructs a new vector initialized to all zeros.
*/
constexpr Vec4() {}
2019-11-23 20:27:39 +08:00
/**
* Constructs a new vector initialized to the specified values.
*
* @param xx The x coordinate.
* @param yy The y coordinate.
* @param zz The z coordinate.
* @param ww The w coordinate.
*/
constexpr Vec4(float xx, float yy, float zz, float ww) : Vec4Base(xx, yy, zz, ww) {}
2019-11-23 20:27:39 +08:00
/**
* Constructs a new vector from the values in the specified array.
*
* @param array An array containing the elements of the vector in the order x, y, z, w.
*/
constexpr explicit Vec4(const float* array) : Vec4Base(array) {}
2019-11-23 20:27:39 +08:00
/**
* Constructs a vector that describes the direction between the specified points.
*
* @param p1 The first point.
* @param p2 The second point.
*/
constexpr Vec4(const Vec4& p1, const Vec4& p2) { setDirection(p1, p2); }
2019-11-23 20:27:39 +08:00
/**
* Creates a new vector from an integer interpreted as an RGBA value.
* E.g. 0xff0000ff represents opaque red or the vector (1, 0, 0, 1).
*
* @param color The integer to interpret as an RGBA value.
*
* @return A vector corresponding to the interpreted RGBA color.
*/
static Vec4 fromColor(unsigned int color);
/**
* Indicates whether this vector contains all zeros.
*
* @return true if this vector contains all zeros, false otherwise.
*/
bool isZero() const;
/**
* Indicates whether this vector contains all ones.
*
* @return true if this vector contains all ones, false otherwise.
*/
bool isOne() const;
/**
* Returns the angle (in radians) between the specified vectors.
*
* @param v1 The first vector.
* @param v2 The second vector.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @return The angle between the two vectors (in radians).
*/
static float angle(const Vec4& v1, const Vec4& v2);
/**
* Adds the specified vectors and stores the result in dst.
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst A vector to store the result in.
*/
static void add(const Vec4& v1, const Vec4& v2, Vec4* dst);
/**
* Clamps this vector within the specified range.
*
* @param min The minimum value.
* @param max The maximum value.
*/
void clamp(const Vec4& min, const Vec4& max);
/**
* Clamps the specified vector within the specified range and returns it in dst.
*
* @param v The vector to clamp.
* @param min The minimum value.
* @param max The maximum value.
* @param dst A vector to store the result in.
*/
static void clamp(const Vec4& v, const Vec4& min, const Vec4& max, Vec4* dst);
/**
* Returns the distance between this vector and v.
*
* @param v The other vector.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @return The distance between this vector and v.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @see distanceSquared
*/
float distance(const Vec4& v) const;
/**
* Returns the squared distance between this vector and v.
*
* When it is not necessary to get the exact distance between
* two vectors (for example, when simply comparing the
* distance between different vectors), it is advised to use
* this method instead of distance.
*
* @param v The other vector.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @return The squared distance between this vector and v.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @see distance
*/
float distanceSquared(const Vec4& v) const;
/**
* Returns the dot product of this vector and the specified vector.
*
* @param v The vector to compute the dot product with.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @return The dot product.
*/
float dot(const Vec4& v) const;
/**
* Returns the dot product between the specified vectors.
*
* @param v1 The first vector.
* @param v2 The second vector.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @return The dot product between the vectors.
*/
static float dot(const Vec4& v1, const Vec4& v2);
/**
* Computes the length of this vector.
*
* @return The length of the vector.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @see lengthSquared
*/
float length() const;
/**
* Returns the squared length of this vector.
*
* When it is not necessary to get the exact length of a
* vector (for example, when simply comparing the lengths of
* different vectors), it is advised to use this method
* instead of length.
*
* @return The squared length of the vector.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @see length
*/
float lengthSquared() const;
/**
* Normalizes this vector.
*
* This method normalizes this Vec4 so that it is of
* unit length (in other words, the length of the vector
* after calling this method will be 1.0f). If the vector
* already has unit length or if the length of the vector
* is zero, this method does nothing.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @return This vector, after the normalization occurs.
*/
void normalize();
/**
* Get the normalized vector.
*/
Vec4 getNormalized() const;
/**
* Sets this vector to the directional vector between the specified points.
2021-12-25 10:04:45 +08:00
*
2019-11-23 20:27:39 +08:00
* @param p1 The first point.
* @param p2 The second point.
*/
constexpr void setDirection(const Vec4& p1, const Vec4& p2)
{
x = p2.x - p1.x;
y = p2.y - p1.y;
z = p2.z - p1.z;
w = p2.w - p1.w;
}
2019-11-23 20:27:39 +08:00
/**
* Subtracts the specified vectors and stores the result in dst.
* The resulting vector is computed as (v1 - v2).
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst The destination vector.
*/
static void subtract(const Vec4& v1, const Vec4& v2, Vec4* dst);
/** equals to Vec4(0,0,0,0) */
static const Vec4 ZERO;
/** equals to Vec4(1,1,1,1) */
static const Vec4 ONE;
/** equals to Vec4(1,0,0,0) */
static const Vec4 UNIT_X;
/** equals to Vec4(0,1,0,0) */
static const Vec4 UNIT_Y;
/** equals to Vec4(0,0,1,0) */
static const Vec4 UNIT_Z;
/** equals to Vec4(0,0,0,1) */
static const Vec4 UNIT_W;
};
#if !(defined(AX_DLLEXPORT) || defined(AX_DLLIMPORT))
inline constexpr Vec4 Vec4::ZERO = Vec4(0.0f, 0.0f, 0.0f, 0.0f);
inline constexpr Vec4 Vec4::ONE = Vec4(1.0f, 1.0f, 1.0f, 1.0f);
inline constexpr Vec4 Vec4::UNIT_X = Vec4(1.0f, 0.0f, 0.0f, 0.0f);
inline constexpr Vec4 Vec4::UNIT_Y = Vec4(0.0f, 1.0f, 0.0f, 0.0f);
inline constexpr Vec4 Vec4::UNIT_Z = Vec4(0.0f, 0.0f, 1.0f, 0.0f);
inline constexpr Vec4 Vec4::UNIT_W = Vec4(0.0f, 0.0f, 0.0f, 1.0f);
#endif
NS_AX_MATH_END
2019-11-23 20:27:39 +08:00
/**
end of base group
@}
*/
2021-12-25 10:04:45 +08:00
#endif // MATH_VEC4_H