axmol/tests/cpp-tests/Classes/ShaderTest/shaderTest.psh.h

475 lines
16 KiB
C
Raw Normal View History

2014-05-10 02:48:11 +08:00
#define STRINGIFY(A) #A
static const char* starFlame = STRINGIFY(
uniform vec2 center;
uniform vec2 resolution;
vec2 iResolution = resolution; // viewport resolution (in pixels)
float iGlobalTime = CC_Time[1]; // shader playback time (in seconds)
//uniform float iChannelTime[4]; // channel playback time (in seconds)
//uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)
vec4 iMouse = vec4(0,0,0,0); // mouse pixel coords. xy: current (if MLB down), zw: click
//uniform sampler2D iChannel0; // input channel. XX = 2D/Cube
float noise(vec3 p) //Thx to Las^Mercury
{
vec3 i = floor(p);
vec4 a = dot(i, vec3(1., 57., 21.)) + vec4(0., 57., 21., 78.);
vec3 f = cos((p-i)*acos(-1.))*(-.5)+.5;
a = mix(sin(cos(a)*a),sin(cos(1.+a)*(1.+a)), f.x);
a.xy = mix(a.xz, a.yw, f.y);
return mix(a.x, a.y, f.z);
}
float sphere(vec3 p, vec4 spr)
{
return length(spr.xyz-p) - spr.w;
}
float flame(vec3 p)
{
float d = sphere(p*vec3(1.,.5,1.), vec4(.0,-1.,.0,1.));
return d + (noise(p+vec3(.0,iGlobalTime*2.,.0)) + noise(p*3.)*.5)*.25*(p.y) ;
}
float scene(vec3 p)
{
return min(100.-length(p) , abs(flame(p)) );
}
vec4 raymarch(vec3 org, vec3 dir)
{
float d = 0.0 ;
float glow = 0.0;
float eps = 0.02;
vec3 p = org;
bool glowed = false;
for(int i=0; i<64; i++)
{
d = scene(p) + eps;
p += d * dir;
if( d>eps )
{
if(flame(p) < .0)
glowed=true;
if(glowed)
glow = float(i)/64.;
}
}
return vec4(p,glow);
}
void main()
{
vec2 v = -1.0 + (2.0 * gl_FragCoord.xy)/ iResolution.xy;
//vec2 v = 2.0 * gl_FragCoord.xy / iResolution.xy;
v.x *= iResolution.x/iResolution.y;
vec3 org = vec3(0., -2., 4.);
vec3 dir = normalize(vec3(v.x*1.6, -v.y, -1.5));
vec4 p = raymarch(org, dir);
float glow = p.w;
vec4 col = mix(vec4(1.,.5,.1,1.), vec4(0.1,.5,1.,1.), p.y*.02+.4);
gl_FragColor = mix(vec4(0.), col, pow(glow*2.,4.));
//gl_FragColor = col;
//gl_FragColor = mix(vec4(1.), mix(vec4(1.,.5,.1,1.),vec4(0.1,.5,1.,1.),p.y*.02+.4), pow(glow*2.,4.));
}
);
static const char* starNestFrg = STRINGIFY(
uniform vec2 center;
uniform vec2 resolution;
vec2 iCenter = center;
vec2 iResolution = resolution; // viewport resolution (in pixels)
float iGlobalTime = CC_Time[1]; // shader playback time (in seconds)
//uniform float iChannelTime[4]; // channel playback time (in seconds)
//uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)
vec4 iMouse = vec4(0,0,0,0); // mouse pixel coords. xy: current (if MLB down), zw: click
//uniform sampler2D iChannel0; // input channel. XX = 2D/Cube
// Star Nest by Pablo Román Andrioli
// This content is under the MIT License.
int iterations = 17;
float formuparam = 0.53;
int volsteps = 20;
float stepsize = 0.1;
float zoom = 0.800;
float tile = 0.850;
float speed = 0.010;
float brightness = 0.0015;
float darkmatter = 0.300;
float distfading = 0.730;
float saturation = 0.850;
void main(void)
{
// iCenter = vec2(300, 300);
//get coords and direction
vec2 uv=gl_FragCoord.xy/iResolution.xy -.5;
//vec2 uv=gl_FragCoord.xy/iResolution.xy ;
//vec2 uv = ( 2* gl_FragCoord.xy - iCenter.xy) / resolution.xy;
uv.y*=iResolution.y/iResolution.x;
//vec2 uv = 2.0* (gl_FragCoord.xy-iResolution.xy)/min(iResolution.y,iResolution.x);
vec3 dir=vec3(uv*zoom,1.);
float time=iGlobalTime*speed+.25;
//mouse rotation
float a1=.5+iMouse.x/iResolution.x*2.;
float a2=.8+iMouse.y/iResolution.y*2.;
mat2 rot1=mat2(cos(a1),sin(a1),-sin(a1),cos(a1));
mat2 rot2=mat2(cos(a2),sin(a2),-sin(a2),cos(a2));
dir.xz*=rot1;
dir.xy*=rot2;
vec3 from=vec3(1.,.5,0.5);
from+=vec3(time*2.,time,-2.);
from.xz*=rot1;
from.xy*=rot2;
//volumetric rendering
float s=0.1;
float fade=1.;
vec3 v=vec3(0.);
for (int r=0; r<volsteps; r++) {
vec3 p=from+s*dir*.5;
p = abs(vec3(tile)-mod(p,vec3(tile*2.))); // tiling fold
float a= 0.;
float pa=0.;
for (int i=0; i<iterations; i++) {
p=abs(p)/dot(p,p)-formuparam; // the magic formula
a+=abs(length(p)-pa); // absolute sum of average change
pa=length(p);
}
float dm=max(0.,darkmatter-a*a*.001); //dark matter
a*=a*a; // add contrast
if (r>6) fade*=1.-dm; // dark matter, don't render near
//v+=vec3(dm,dm*.5,0.);
v+=fade;
v+=vec3(s,s*s,s*s*s*s)*a*brightness*fade; // coloring based on distance
fade*=distfading; // distance fading
s+=stepsize;
}
v=mix(vec3(length(v)),v,saturation); //color adjust
gl_FragColor = vec4(v*.01,1.);
}
);
static const char* shadertoyRelentlessFrag = STRINGIFY(
uniform vec2 center;
uniform vec2 resolution;
vec2 iCenter = center;
vec2 iResolution = resolution; // viewport resolution (in pixels)
float iGlobalTime = CC_Time[1]; // shader playback time (in seconds)
//uniform float iChannelTime[4]; // channel playback time (in seconds)
//uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)
vec4 iMouse = vec4(0,0,0,0); // mouse pixel coords. xy: current (if MLB down), zw: click
//uniform sampler2D iChannel0; // input channel. XX = 2D/Cube
// srtuss, 2013
// collecting some design ideas for a new game project.
// no raymarching is used.
// if i could add a custom soundtrack, it'd use this one (essential for desired sensation)
// http://www.youtube.com/watch?v=1uFAu65tZpo
//#define GREEN_VERSION
// ** improved camera shaking
// ** cleaned up code
// ** added stuff to the gates
float time = iGlobalTime;
vec2 rotate(vec2 p, float a)
{
return vec2(p.x * cos(a) - p.y * sin(a), p.x * sin(a) + p.y * cos(a));
}
float box(vec2 p, vec2 b, float r)
{
return length(max(abs(p) - b, 0.0)) - r;
}
// iq's ray-plane-intersection code
vec3 intersect(in vec3 o, in vec3 d, vec3 c, vec3 u, vec3 v)
{
vec3 q = o - c;
return vec3(
dot(cross(u, v), q),
dot(cross(q, u), d),
dot(cross(v, q), d)) / dot(cross(v, u), d);
}
// some noise functions for fast developing
float rand11(float p)
{
return fract(sin(p * 591.32) * 43758.5357);
}
float rand12(vec2 p)
{
return fract(sin(dot(p.xy, vec2(12.9898, 78.233))) * 43758.5357);
}
vec2 rand21(float p)
{
return fract(vec2(sin(p * 591.32), cos(p * 391.32)));
}
vec2 rand22(in vec2 p)
{
return fract(vec2(sin(p.x * 591.32 + p.y * 154.077), cos(p.x * 391.32 + p.y * 49.077)));
}
float noise11(float p)
{
float fl = floor(p);
return mix(rand11(fl), rand11(fl + 1.0), fract(p));//smoothstep(0.0, 1.0, fract(p)));
}
float fbm11(float p)
{
return noise11(p) * 0.5 + noise11(p * 2.0) * 0.25 + noise11(p * 5.0) * 0.125;
}
vec3 noise31(float p)
{
return vec3(noise11(p), noise11(p + 18.952), noise11(p - 11.372)) * 2.0 - 1.0;
}
// something that looks a bit like godrays coming from the surface
float sky(vec3 p)
{
float a = atan(p.x, p.z);
float t = time * 0.1;
float v = rand11(floor(a * 4.0 + t)) * 0.5 + rand11(floor(a * 8.0 - t)) * 0.25 + rand11(floor(a * 16.0 + t)) * 0.125;
return v;
}
vec3 voronoi(in vec2 x)
{
vec2 n = floor(x); // grid cell id
vec2 f = fract(x); // grid internal position
vec2 mg; // shortest distance...
vec2 mr; // ..and second shortest distance
float md = 8.0;
float md2 = 8.0;
for(int j = -1; j <= 1; j ++)
{
for(int i = -1; i <= 1; i ++)
{
vec2 g = vec2(float(i), float(j)); // cell id
vec2 o = rand22(n + g); // offset to edge point
vec2 r = g + o - f;
float d = max(abs(r.x), abs(r.y)); // distance to the edge
if(d < md)
{md2 = md; md = d; mr = r; mg = g;}
else if(d < md2)
{md2 = d;}
}
}
return vec3(n + mg, md2 - md);
}
//#define A2V(a) vec2(sin((a) * 6.28318531 / 100.0), cos((a) * 6.28318531 / 100.0))
vec2 A2V(float a)
{
return vec2(sin((a) * 6.28318531 / 100.0), cos((a) * 6.28318531 / 100.0));
}
float circles(vec2 p)
{
float v;
float w;
float l;
float c;
vec2 pp;
l = length(p);
pp = rotate(p, time * 3.0);
c = max(dot(pp, normalize(vec2(-0.2, 0.5))), -dot(pp, normalize(vec2(0.2, 0.5))));
c = min(c, max(dot(pp, normalize(vec2(0.5, -0.5))), -dot(pp, normalize(vec2(0.2, -0.5)))));
c = min(c, max(dot(pp, normalize(vec2(0.3, 0.5))), -dot(pp, normalize(vec2(0.2, 0.5)))));
// innerest stuff
v = abs(l - 0.5) - 0.03;
v = max(v, -c);
v = min(v, abs(l - 0.54) - 0.02);
v = min(v, abs(l - 0.64) - 0.05);
pp = rotate(p, time * -1.333);
c = max(dot(pp, A2V(-5.0)), -dot(pp, A2V(5.0)));
c = min(c, max(dot(pp, A2V(25.0 - 5.0)), -dot(pp, A2V(25.0 + 5.0))));
c = min(c, max(dot(pp, A2V(50.0 - 5.0)), -dot(pp, A2V(50.0 + 5.0))));
c = min(c, max(dot(pp, A2V(75.0 - 5.0)), -dot(pp, A2V(75.0 + 5.0))));
w = abs(l - 0.83) - 0.09;
v = min(v, max(w, c));
return v;
}
float shade1(float d)
{
float v = 1.0 - smoothstep(0.0, mix(0.012, 0.2, 0.0), d);
float g = exp(d * -20.0);
return v + g * 0.5;
}
void main(void)
{
vec2 uv = gl_FragCoord.xy / iResolution.xy;
uv = uv * 2.0 - 1.0;
uv.x *= iResolution.x / iResolution.y;
// using an iq styled camera this time :)
// ray origin
vec3 ro = 0.7 * vec3(cos(0.2 * time), 0.0, sin(0.2 * time));
ro.y = cos(0.6 * time) * 0.3 + 0.65;
// camera look at
vec3 ta = vec3(0.0, 0.2, 0.0);
// camera shake intensity
float shake = clamp(3.0 * (1.0 - length(ro.yz)), 0.3, 1.0);
float st = mod(time, 10.0) * 143.0;
// build camera matrix
vec3 ww = normalize(ta - ro + noise31(st) * shake * 0.01);
vec3 uu = normalize(cross(ww, normalize(vec3(0.0, 1.0, 0.2 * sin(time)))));
vec3 vv = normalize(cross(uu, ww));
// obtain ray direction
vec3 rd = normalize(uv.x * uu + uv.y * vv + 1.0 * ww);
// shaking and movement
ro += noise31(-st) * shake * 0.015;
ro.x += time * 2.0;
float inten = 0.0;
// background
float sd = dot(rd, vec3(0.0, 1.0, 0.0));
inten = pow(1.0 - abs(sd), 20.0) + pow(sky(rd), 5.0) * step(0.0, rd.y) * 0.2;
vec3 its;
float v;
float g;
// voronoi floor layers
for(int i = 0; i < 4; i ++)
{
float layer = float(i);
its = intersect(ro, rd, vec3(0.0, -5.0 - layer * 5.0, 0.0), vec3(1.0, 0.0, 0.0), vec3(0.0, 0.0, 1.0));
if(its.x > 0.0)
{
vec3 vo = voronoi((its.yz) * 0.05 + 8.0 * rand21(float(i)));
v = exp(-100.0 * (vo.z - 0.02));
float fx = 0.0;
// add some special fx to lowest layer
if(i == 3)
{
float crd = 0.0;//fract(time * 0.2) * 50.0 - 25.0;
float fxi = cos(vo.x * 0.2 + time * 1.5);//abs(crd - vo.x);
fx = clamp(smoothstep(0.9, 1.0, fxi), 0.0, 0.9) * 1.0 * rand12(vo.xy);
fx *= exp(-3.0 * vo.z) * 2.0;
}
inten += v * 0.1 + fx;
}
}
// draw the gates, 4 should be enough
float gatex = floor(ro.x / 8.0 + 0.5) * 8.0 + 4.0;
float go = -16.0;
for(int i = 0; i < 4; i ++)
{
its = intersect(ro, rd, vec3(gatex + go, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0));
if(dot(its.yz, its.yz) < 2.0 && its.x > 0.0)
{
v = circles(its.yz);
inten += shade1(v);
}
go += 8.0;
}
// draw the stream
for(int j = 0; j < 20; j ++)
{
float id = float(j);
vec3 bp = vec3(0.0, (rand11(id) * 2.0 - 1.0) * 0.25, 0.0);
vec3 its = intersect(ro, rd, bp, vec3(1.0, 0.0, 0.0), vec3(0.0, 0.0, 1.0));
if(its.x > 0.0)
{
vec2 pp = its.yz;
float spd = (1.0 + rand11(id) * 3.0) * 2.5;
pp.y += time * spd;
pp += (rand21(id) * 2.0 - 1.0) * vec2(0.3, 1.0);
float rep = rand11(id) + 1.5;
pp.y = mod(pp.y, rep * 2.0) - rep;
float d = box(pp, vec2(0.02, 0.3), 0.1);
float foc = 0.0;
float v = 1.0 - smoothstep(0.0, 0.03, abs(d) - 0.001);
float g = min(exp(d * -20.0), 2.0);
inten += (v + g * 0.7) * 0.5;
}
}
inten *= 0.4 + (sin(time) * 0.5 + 0.5) * 0.6;
// find a color for the computed intensity
#ifdef GREEN_VERSION
vec3 col = pow(vec3(inten), vec3(2.0, 0.15, 9.0));
#else
vec3 col = pow(vec3(inten), 1.5 * vec3(0.15, 2.0, 9.0));
#endif
gl_FragColor = vec4(col, 1.0);
}
);