axmol/scripting/javascript/spidermonkey-android/include/js/HashTable.h

1358 lines
42 KiB
C
Raw Normal View History

2012-05-28 16:58:16 +08:00
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=99 ft=cpp:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla SpiderMonkey JavaScript 1.9 code, released
* November 13, 2009.
*
* The Initial Developer of the Original Code is
* the Mozilla Corporation.
*
* Contributor(s):
* Brendan Eich <brendan@mozilla.org> (Original Author)
* Chris Waterson <waterson@netscape.com>
* L. David Baron <dbaron@dbaron.org>, Mozilla Corporation
* Luke Wagner <lw@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef jshashtable_h_
#define jshashtable_h_
#include "TemplateLib.h"
#include "Utility.h"
namespace js {
class TempAllocPolicy;
/* Integral types for all hash functions. */
typedef uint32_t HashNumber;
/*****************************************************************************/
namespace detail {
template <class T, class HashPolicy, class AllocPolicy>
class HashTable;
template <class T>
class HashTableEntry {
HashNumber keyHash;
typedef typename tl::StripConst<T>::result NonConstT;
static const HashNumber sFreeKey = 0;
static const HashNumber sRemovedKey = 1;
static const HashNumber sCollisionBit = 1;
template <class, class, class> friend class HashTable;
static bool isLiveHash(HashNumber hash)
{
return hash > sRemovedKey;
}
public:
HashTableEntry() : keyHash(0), t() {}
HashTableEntry(MoveRef<HashTableEntry> rhs) : keyHash(rhs->keyHash), t(Move(rhs->t)) { }
void operator=(const HashTableEntry &rhs) { keyHash = rhs.keyHash; t = rhs.t; }
void operator=(MoveRef<HashTableEntry> rhs) { keyHash = rhs->keyHash; t = Move(rhs->t); }
NonConstT t;
bool isFree() const { return keyHash == sFreeKey; }
void setFree() { keyHash = sFreeKey; t = T(); }
bool isRemoved() const { return keyHash == sRemovedKey; }
void setRemoved() { keyHash = sRemovedKey; t = T(); }
bool isLive() const { return isLiveHash(keyHash); }
void setLive(HashNumber hn) { JS_ASSERT(isLiveHash(hn)); keyHash = hn; }
void setCollision() { JS_ASSERT(isLive()); keyHash |= sCollisionBit; }
void setCollision(HashNumber collisionBit) {
JS_ASSERT(isLive()); keyHash |= collisionBit;
}
void unsetCollision() { JS_ASSERT(isLive()); keyHash &= ~sCollisionBit; }
bool hasCollision() const { JS_ASSERT(isLive()); return keyHash & sCollisionBit; }
bool matchHash(HashNumber hn) { return (keyHash & ~sCollisionBit) == hn; }
HashNumber getKeyHash() const { JS_ASSERT(!hasCollision()); return keyHash; }
};
/*
* js::detail::HashTable is an implementation detail of the js::HashMap and
* js::HashSet templates. For js::Hash{Map,Set} API documentation and examples,
* skip to the end of the detail namespace.
*/
/* Reusable implementation of HashMap and HashSet. */
template <class T, class HashPolicy, class AllocPolicy>
class HashTable : private AllocPolicy
{
typedef typename tl::StripConst<T>::result NonConstT;
typedef typename HashPolicy::KeyType Key;
typedef typename HashPolicy::Lookup Lookup;
public:
typedef HashTableEntry<T> Entry;
/*
* A nullable pointer to a hash table element. A Ptr |p| can be tested
* either explicitly |if (p.found()) p->...| or using boolean conversion
* |if (p) p->...|. Ptr objects must not be used after any mutating hash
* table operations unless |generation()| is tested.
*/
class Ptr
{
friend class HashTable;
typedef void (Ptr::* ConvertibleToBool)();
void nonNull() {}
Entry *entry;
protected:
Ptr(Entry &entry) : entry(&entry) {}
public:
/* Leaves Ptr uninitialized. */
Ptr() {
#ifdef DEBUG
entry = (Entry *)0xbad;
#endif
}
bool found() const { return entry->isLive(); }
operator ConvertibleToBool() const { return found() ? &Ptr::nonNull : 0; }
bool operator==(const Ptr &rhs) const { JS_ASSERT(found() && rhs.found()); return entry == rhs.entry; }
bool operator!=(const Ptr &rhs) const { return !(*this == rhs); }
T &operator*() const { return entry->t; }
T *operator->() const { return &entry->t; }
};
/* A Ptr that can be used to add a key after a failed lookup. */
class AddPtr : public Ptr
{
friend class HashTable;
HashNumber keyHash;
#ifdef DEBUG
uint64_t mutationCount;
AddPtr(Entry &entry, HashNumber hn, uint64_t mutationCount)
: Ptr(entry), keyHash(hn), mutationCount(mutationCount) {}
#else
AddPtr(Entry &entry, HashNumber hn) : Ptr(entry), keyHash(hn) {}
#endif
public:
/* Leaves AddPtr uninitialized. */
AddPtr() {}
};
/*
* A collection of hash table entries. The collection is enumerated by
* calling |front()| followed by |popFront()| as long as |!empty()|. As
* with Ptr/AddPtr, Range objects must not be used after any mutating hash
* table operation unless the |generation()| is tested.
*/
class Range
{
protected:
friend class HashTable;
Range(Entry *c, Entry *e) : cur(c), end(e) {
while (cur < end && !cur->isLive())
++cur;
}
Entry *cur, *end;
public:
Range() : cur(NULL), end(NULL) {}
bool empty() const {
return cur == end;
}
T &front() const {
JS_ASSERT(!empty());
return cur->t;
}
void popFront() {
JS_ASSERT(!empty());
while (++cur < end && !cur->isLive())
continue;
}
};
/*
* A Range whose lifetime delimits a mutating enumeration of a hash table.
* Since rehashing when elements were removed during enumeration would be
* bad, it is postponed until |endEnumeration()| is called. If
* |endEnumeration()| is not called before an Enum's constructor, it will
* be called automatically. Since |endEnumeration()| touches the hash
* table, the user must ensure that the hash table is still alive when this
* happens.
*/
class Enum : public Range
{
friend class HashTable;
HashTable &table;
bool removed;
/* Not copyable. */
Enum(const Enum &);
void operator=(const Enum &);
public:
template<class Map> explicit
Enum(Map &map) : Range(map.all()), table(map.impl), removed(false) {}
/*
* Removes the |front()| element from the table, leaving |front()|
* invalid until the next call to |popFront()|. For example:
*
* HashSet<int> s;
* for (HashSet<int>::Enum e(s); !e.empty(); e.popFront())
* if (e.front() == 42)
* e.removeFront();
*/
void removeFront() {
table.remove(*this->cur);
removed = true;
}
/* Potentially rehashes the table. */
~Enum() {
if (removed)
table.checkUnderloaded();
}
/* Can be used to end the enumeration before the destructor. */
void endEnumeration() {
if (removed) {
table.checkUnderloaded();
removed = false;
}
}
};
private:
uint32_t hashShift; /* multiplicative hash shift */
uint32_t entryCount; /* number of entries in table */
uint32_t gen; /* entry storage generation number */
uint32_t removedCount; /* removed entry sentinels in table */
Entry *table; /* entry storage */
void setTableSizeLog2(unsigned sizeLog2) {
hashShift = sHashBits - sizeLog2;
}
#ifdef DEBUG
mutable struct Stats {
uint32_t searches; /* total number of table searches */
uint32_t steps; /* hash chain links traversed */
uint32_t hits; /* searches that found key */
uint32_t misses; /* searches that didn't find key */
uint32_t addOverRemoved; /* adds that recycled a removed entry */
uint32_t removes; /* calls to remove */
uint32_t removeFrees; /* calls to remove that freed the entry */
uint32_t grows; /* table expansions */
uint32_t shrinks; /* table contractions */
uint32_t compresses; /* table compressions */
} stats;
# define METER(x) x
#else
# define METER(x)
#endif
#ifdef DEBUG
friend class js::ReentrancyGuard;
mutable bool entered;
uint64_t mutationCount;
#endif
/* The default initial capacity is 16, but you can ask for as small as 4. */
static const unsigned sMinSizeLog2 = 2;
static const unsigned sMinSize = 1 << sMinSizeLog2;
static const unsigned sDefaultInitSizeLog2 = 4;
public:
static const unsigned sDefaultInitSize = 1 << sDefaultInitSizeLog2;
private:
static const unsigned sMaxInit = JS_BIT(23);
static const unsigned sMaxCapacity = JS_BIT(24);
static const unsigned sHashBits = tl::BitSize<HashNumber>::result;
static const uint8_t sMinAlphaFrac = 64; /* (0x100 * .25) taken from jsdhash.h */
static const uint8_t sMaxAlphaFrac = 192; /* (0x100 * .75) taken from jsdhash.h */
static const uint8_t sInvMaxAlpha = 171; /* (ceil(0x100 / .75) >> 1) */
static const HashNumber sGoldenRatio = 0x9E3779B9U; /* taken from jsdhash.h */
static const HashNumber sFreeKey = Entry::sFreeKey;
static const HashNumber sRemovedKey = Entry::sRemovedKey;
static const HashNumber sCollisionBit = Entry::sCollisionBit;
static void staticAsserts()
{
/* Rely on compiler "constant overflow warnings". */
JS_STATIC_ASSERT(((sMaxInit * sInvMaxAlpha) >> 7) < sMaxCapacity);
JS_STATIC_ASSERT((sMaxCapacity * sInvMaxAlpha) <= UINT32_MAX);
JS_STATIC_ASSERT((sMaxCapacity * sizeof(Entry)) <= UINT32_MAX);
}
static bool isLiveHash(HashNumber hash)
{
return Entry::isLiveHash(hash);
}
static HashNumber prepareHash(const Lookup& l)
{
HashNumber keyHash = HashPolicy::hash(l);
/* Improve keyHash distribution. */
keyHash *= sGoldenRatio;
/* Avoid reserved hash codes. */
if (!isLiveHash(keyHash))
keyHash -= (sRemovedKey + 1);
return keyHash & ~sCollisionBit;
}
static Entry *createTable(AllocPolicy &alloc, uint32_t capacity)
{
Entry *newTable = (Entry *)alloc.malloc_(capacity * sizeof(Entry));
if (!newTable)
return NULL;
for (Entry *e = newTable, *end = e + capacity; e < end; ++e)
new(e) Entry();
return newTable;
}
static void destroyTable(AllocPolicy &alloc, Entry *oldTable, uint32_t capacity)
{
for (Entry *e = oldTable, *end = e + capacity; e < end; ++e)
e->~Entry();
alloc.free_(oldTable);
}
public:
HashTable(AllocPolicy ap)
: AllocPolicy(ap),
hashShift(sHashBits),
entryCount(0),
gen(0),
removedCount(0),
table(NULL)
#ifdef DEBUG
, entered(false),
mutationCount(0)
#endif
{}
bool init(uint32_t length)
{
/* Make sure that init isn't called twice. */
JS_ASSERT(table == NULL);
/*
* Correct for sMaxAlphaFrac such that the table will not resize
* when adding 'length' entries.
*/
if (length > sMaxInit) {
this->reportAllocOverflow();
return false;
}
uint32_t capacity = (length * sInvMaxAlpha) >> 7;
if (capacity < sMinSize)
capacity = sMinSize;
/* FIXME: use JS_CEILING_LOG2 when PGO stops crashing (bug 543034). */
uint32_t roundUp = sMinSize, roundUpLog2 = sMinSizeLog2;
while (roundUp < capacity) {
roundUp <<= 1;
++roundUpLog2;
}
capacity = roundUp;
JS_ASSERT(capacity <= sMaxCapacity);
table = createTable(*this, capacity);
if (!table)
return false;
setTableSizeLog2(roundUpLog2);
METER(memset(&stats, 0, sizeof(stats)));
return true;
}
bool initialized() const
{
return !!table;
}
~HashTable()
{
if (table)
destroyTable(*this, table, capacity());
}
private:
static HashNumber hash1(HashNumber hash0, uint32_t shift) {
return hash0 >> shift;
}
static HashNumber hash2(HashNumber hash0, uint32_t log2, uint32_t shift) {
return ((hash0 << log2) >> shift) | 1;
}
bool overloaded() {
return entryCount + removedCount >= ((sMaxAlphaFrac * capacity()) >> 8);
}
bool underloaded() {
uint32_t tableCapacity = capacity();
return tableCapacity > sMinSize &&
entryCount <= ((sMinAlphaFrac * tableCapacity) >> 8);
}
static bool match(Entry &e, const Lookup &l) {
return HashPolicy::match(HashPolicy::getKey(e.t), l);
}
Entry &lookup(const Lookup &l, HashNumber keyHash, unsigned collisionBit) const
{
JS_ASSERT(isLiveHash(keyHash));
JS_ASSERT(!(keyHash & sCollisionBit));
JS_ASSERT(collisionBit == 0 || collisionBit == sCollisionBit);
JS_ASSERT(table);
METER(stats.searches++);
/* Compute the primary hash address. */
HashNumber h1 = hash1(keyHash, hashShift);
Entry *entry = &table[h1];
/* Miss: return space for a new entry. */
if (entry->isFree()) {
METER(stats.misses++);
return *entry;
}
/* Hit: return entry. */
if (entry->matchHash(keyHash) && match(*entry, l)) {
METER(stats.hits++);
return *entry;
}
/* Collision: double hash. */
unsigned sizeLog2 = sHashBits - hashShift;
HashNumber h2 = hash2(keyHash, sizeLog2, hashShift);
HashNumber sizeMask = (HashNumber(1) << sizeLog2) - 1;
/* Save the first removed entry pointer so we can recycle later. */
Entry *firstRemoved = NULL;
while(true) {
if (JS_UNLIKELY(entry->isRemoved())) {
if (!firstRemoved)
firstRemoved = entry;
} else {
entry->setCollision(collisionBit);
}
METER(stats.steps++);
h1 -= h2;
h1 &= sizeMask;
entry = &table[h1];
if (entry->isFree()) {
METER(stats.misses++);
return firstRemoved ? *firstRemoved : *entry;
}
if (entry->matchHash(keyHash) && match(*entry, l)) {
METER(stats.hits++);
return *entry;
}
}
}
/*
* This is a copy of lookup hardcoded to the assumptions:
* 1. the lookup is a lookupForAdd
* 2. the key, whose |keyHash| has been passed is not in the table,
* 3. no entries have been removed from the table.
* This specialized search avoids the need for recovering lookup values
* from entries, which allows more flexible Lookup/Key types.
*/
Entry &findFreeEntry(HashNumber keyHash)
{
METER(stats.searches++);
JS_ASSERT(!(keyHash & sCollisionBit));
/* N.B. the |keyHash| has already been distributed. */
/* Compute the primary hash address. */
HashNumber h1 = hash1(keyHash, hashShift);
Entry *entry = &table[h1];
/* Miss: return space for a new entry. */
if (entry->isFree()) {
METER(stats.misses++);
return *entry;
}
/* Collision: double hash. */
unsigned sizeLog2 = sHashBits - hashShift;
HashNumber h2 = hash2(keyHash, sizeLog2, hashShift);
HashNumber sizeMask = (HashNumber(1) << sizeLog2) - 1;
while(true) {
JS_ASSERT(!entry->isRemoved());
entry->setCollision();
METER(stats.steps++);
h1 -= h2;
h1 &= sizeMask;
entry = &table[h1];
if (entry->isFree()) {
METER(stats.misses++);
return *entry;
}
}
}
bool changeTableSize(int deltaLog2)
{
/* Look, but don't touch, until we succeed in getting new entry store. */
Entry *oldTable = table;
uint32_t oldCap = capacity();
uint32_t newLog2 = sHashBits - hashShift + deltaLog2;
uint32_t newCapacity = JS_BIT(newLog2);
if (newCapacity > sMaxCapacity) {
this->reportAllocOverflow();
return false;
}
Entry *newTable = createTable(*this, newCapacity);
if (!newTable)
return false;
/* We can't fail from here on, so update table parameters. */
setTableSizeLog2(newLog2);
removedCount = 0;
gen++;
table = newTable;
/* Copy only live entries, leaving removed ones behind. */
for (Entry *src = oldTable, *end = src + oldCap; src < end; ++src) {
if (src->isLive()) {
src->unsetCollision();
findFreeEntry(src->getKeyHash()) = Move(*src);
}
}
destroyTable(*this, oldTable, oldCap);
return true;
}
void remove(Entry &e)
{
METER(stats.removes++);
if (e.hasCollision()) {
e.setRemoved();
removedCount++;
} else {
METER(stats.removeFrees++);
e.setFree();
}
entryCount--;
#ifdef DEBUG
mutationCount++;
#endif
}
void checkUnderloaded()
{
if (underloaded()) {
METER(stats.shrinks++);
(void) changeTableSize(-1);
}
}
public:
void clear()
{
if (tl::IsPodType<Entry>::result) {
memset(table, 0, sizeof(*table) * capacity());
} else {
uint32_t tableCapacity = capacity();
for (Entry *e = table, *end = table + tableCapacity; e < end; ++e)
*e = Move(Entry());
}
removedCount = 0;
entryCount = 0;
#ifdef DEBUG
mutationCount++;
#endif
}
void finish()
{
JS_ASSERT(!entered);
if (!table)
return;
destroyTable(*this, table, capacity());
table = NULL;
gen++;
entryCount = 0;
removedCount = 0;
#ifdef DEBUG
mutationCount++;
#endif
}
Range all() const {
return Range(table, table + capacity());
}
bool empty() const {
return !entryCount;
}
uint32_t count() const {
return entryCount;
}
uint32_t capacity() const {
return JS_BIT(sHashBits - hashShift);
}
uint32_t generation() const {
return gen;
}
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return mallocSizeOf(table);
}
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
}
Ptr lookup(const Lookup &l) const {
ReentrancyGuard g(*this);
HashNumber keyHash = prepareHash(l);
return Ptr(lookup(l, keyHash, 0));
}
AddPtr lookupForAdd(const Lookup &l) const {
ReentrancyGuard g(*this);
HashNumber keyHash = prepareHash(l);
Entry &entry = lookup(l, keyHash, sCollisionBit);
#ifdef DEBUG
return AddPtr(entry, keyHash, mutationCount);
#else
return AddPtr(entry, keyHash);
#endif
}
bool add(AddPtr &p)
{
ReentrancyGuard g(*this);
JS_ASSERT(mutationCount == p.mutationCount);
JS_ASSERT(table);
JS_ASSERT(!p.found());
JS_ASSERT(!(p.keyHash & sCollisionBit));
/*
* Changing an entry from removed to live does not affect whether we
* are overloaded and can be handled separately.
*/
if (p.entry->isRemoved()) {
METER(stats.addOverRemoved++);
removedCount--;
p.keyHash |= sCollisionBit;
} else {
/* If alpha is >= .75, grow or compress the table. */
if (overloaded()) {
/* Compress if a quarter or more of all entries are removed. */
int deltaLog2;
if (removedCount >= (capacity() >> 2)) {
METER(stats.compresses++);
deltaLog2 = 0;
} else {
METER(stats.grows++);
deltaLog2 = 1;
}
if (!changeTableSize(deltaLog2))
return false;
/* Preserve the validity of |p.entry|. */
p.entry = &findFreeEntry(p.keyHash);
}
}
p.entry->setLive(p.keyHash);
entryCount++;
#ifdef DEBUG
mutationCount++;
#endif
return true;
}
/*
* There is an important contract between the caller and callee for this
* function: if add() returns true, the caller must assign the T value
* which produced p before using the hashtable again.
*/
bool add(AddPtr &p, T** pentry)
{
if (!add(p))
return false;
*pentry = &p.entry->t;
return true;
}
bool add(AddPtr &p, const T &t)
{
if (!add(p))
return false;
p.entry->t = t;
return true;
}
bool relookupOrAdd(AddPtr& p, const Lookup &l, const T& t)
{
#ifdef DEBUG
p.mutationCount = mutationCount;
#endif
{
ReentrancyGuard g(*this);
p.entry = &lookup(l, p.keyHash, sCollisionBit);
}
return p.found() || add(p, t);
}
void remove(Ptr p)
{
ReentrancyGuard g(*this);
JS_ASSERT(p.found());
remove(*p.entry);
checkUnderloaded();
}
#undef METER
};
} /* namespace detail */
/*****************************************************************************/
/*
* Hash policy
*
* A hash policy P for a hash table with key-type Key must provide:
* - a type |P::Lookup| to use to lookup table entries;
* - a static member function |P::hash| with signature
*
* static js::HashNumber hash(Lookup)
*
* to use to hash the lookup type; and
* - a static member function |P::match| with signature
*
* static bool match(Key, Lookup)
*
* to use to test equality of key and lookup values.
*
* Normally, Lookup = Key. In general, though, different values and types of
* values can be used to lookup and store. If a Lookup value |l| is != to the
* added Key value |k|, the user must ensure that |P::match(k,l)|. E.g.:
*
* js::HashSet<Key, P>::AddPtr p = h.lookup(l);
* if (!p) {
* assert(P::match(k, l)); // must hold
* h.add(p, k);
* }
*/
/* Default hashing policies. */
template <class Key>
struct DefaultHasher
{
typedef Key Lookup;
static HashNumber hash(const Lookup &l) {
/* Hash if can implicitly cast to hash number type. */
return l;
}
static bool match(const Key &k, const Lookup &l) {
/* Use builtin or overloaded operator==. */
return k == l;
}
};
/*
* Pointer hashing policy that strips the lowest zeroBits when calculating the
* hash to improve key distribution.
*/
template <typename Key, size_t zeroBits>
struct PointerHasher
{
typedef Key Lookup;
static HashNumber hash(const Lookup &l) {
size_t word = reinterpret_cast<size_t>(l) >> zeroBits;
JS_STATIC_ASSERT(sizeof(HashNumber) == 4);
#if JS_BYTES_PER_WORD == 4
return HashNumber(word);
#else
JS_STATIC_ASSERT(sizeof word == 8);
return HashNumber((word >> 32) ^ word);
#endif
}
static bool match(const Key &k, const Lookup &l) {
return k == l;
}
};
template <typename Key, size_t zeroBits>
struct TaggedPointerHasher
{
typedef Key Lookup;
static HashNumber hash(const Lookup &l) {
return PointerHasher<Key, zeroBits>::hash(l);
}
static const uintptr_t COMPARE_MASK = uintptr_t(-1) - 1;
static bool match(const Key &k, const Lookup &l) {
return (uintptr_t(k) & COMPARE_MASK) == uintptr_t(l);
}
};
/*
* Specialized hashing policy for pointer types. It assumes that the type is
* at least word-aligned. For types with smaller size use PointerHasher.
*/
template <class T>
struct DefaultHasher<T *>: PointerHasher<T *, tl::FloorLog2<sizeof(void *)>::result> { };
/* Looking for a hasher for jsid? Try the DefaultHasher<jsid> in jsatom.h. */
template <class Key, class Value>
class HashMapEntry
{
template <class, class, class> friend class detail::HashTable;
template <class> friend class detail::HashTableEntry;
void operator=(const HashMapEntry &rhs) {
const_cast<Key &>(key) = rhs.key;
value = rhs.value;
}
public:
HashMapEntry() : key(), value() {}
template<typename KeyInput, typename ValueInput>
HashMapEntry(const KeyInput &k, const ValueInput &v) : key(k), value(v) {}
HashMapEntry(MoveRef<HashMapEntry> rhs)
: key(Move(rhs->key)), value(Move(rhs->value)) { }
void operator=(MoveRef<HashMapEntry> rhs) {
const_cast<Key &>(key) = Move(rhs->key);
value = Move(rhs->value);
}
const Key key;
Value value;
};
namespace tl {
template <class T>
struct IsPodType<detail::HashTableEntry<T> > {
static const bool result = IsPodType<T>::result;
};
template <class K, class V>
struct IsPodType<HashMapEntry<K, V> >
{
static const bool result = IsPodType<K>::result && IsPodType<V>::result;
};
} /* namespace tl */
/*
* JS-friendly, STL-like container providing a hash-based map from keys to
* values. In particular, HashMap calls constructors and destructors of all
* objects added so non-PODs may be used safely.
*
* Key/Value requirements:
* - default constructible, copyable, destructible, assignable
* HashPolicy requirements:
* - see "Hash policy" above (default js::DefaultHasher<Key>)
* AllocPolicy:
* - see "Allocation policies" in jsalloc.h
*
* N.B: HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
* called by HashMap must not call back into the same HashMap object.
* N.B: Due to the lack of exception handling, the user must call |init()|.
*/
template <class Key,
class Value,
class HashPolicy = DefaultHasher<Key>,
class AllocPolicy = TempAllocPolicy>
class HashMap
{
public:
typedef typename HashPolicy::Lookup Lookup;
typedef HashMapEntry<Key, Value> Entry;
private:
/* Implement HashMap using HashTable. Lift |Key| operations to |Entry|. */
struct MapHashPolicy : HashPolicy
{
typedef Key KeyType;
static const Key &getKey(Entry &e) { return e.key; }
};
typedef detail::HashTable<Entry, MapHashPolicy, AllocPolicy> Impl;
friend class Impl::Enum;
/* Not implicitly copyable (expensive). May add explicit |clone| later. */
HashMap(const HashMap &);
HashMap &operator=(const HashMap &);
Impl impl;
public:
/*
* HashMap construction is fallible (due to OOM); thus the user must call
* init after constructing a HashMap and check the return value.
*/
HashMap(AllocPolicy a = AllocPolicy()) : impl(a) {}
bool init(uint32_t len = Impl::sDefaultInitSize) { return impl.init(len); }
bool initialized() const { return impl.initialized(); }
/*
* Return whether the given lookup value is present in the map. E.g.:
*
* typedef HashMap<int,char> HM;
* HM h;
* if (HM::Ptr p = h.lookup(3)) {
* const HM::Entry &e = *p; // p acts like a pointer to Entry
* assert(p->key == 3); // Entry contains the key
* char val = p->value; // and value
* }
*
* Also see the definition of Ptr in HashTable above (with T = Entry).
*/
typedef typename Impl::Ptr Ptr;
Ptr lookup(const Lookup &l) const { return impl.lookup(l); }
/* Assuming |p.found()|, remove |*p|. */
void remove(Ptr p) { impl.remove(p); }
/*
* Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
* insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
* |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new Entry. E.g.:
*
* typedef HashMap<int,char> HM;
* HM h;
* HM::AddPtr p = h.lookupForAdd(3);
* if (!p) {
* if (!h.add(p, 3, 'a'))
* return false;
* }
* const HM::Entry &e = *p; // p acts like a pointer to Entry
* assert(p->key == 3); // Entry contains the key
* char val = p->value; // and value
*
* Also see the definition of AddPtr in HashTable above (with T = Entry).
*
* N.B. The caller must ensure that no mutating hash table operations
* occur between a pair of |lookupForAdd| and |add| calls. To avoid
* looking up the key a second time, the caller may use the more efficient
* relookupOrAdd method. This method reuses part of the hashing computation
* to more efficiently insert the key if it has not been added. For
* example, a mutation-handling version of the previous example:
*
* HM::AddPtr p = h.lookupForAdd(3);
* if (!p) {
* call_that_may_mutate_h();
* if (!h.relookupOrAdd(p, 3, 'a'))
* return false;
* }
* const HM::Entry &e = *p;
* assert(p->key == 3);
* char val = p->value;
*/
typedef typename Impl::AddPtr AddPtr;
AddPtr lookupForAdd(const Lookup &l) const {
return impl.lookupForAdd(l);
}
template<typename KeyInput, typename ValueInput>
bool add(AddPtr &p, const KeyInput &k, const ValueInput &v) {
Entry *pentry;
if (!impl.add(p, &pentry))
return false;
const_cast<Key &>(pentry->key) = k;
pentry->value = v;
return true;
}
bool add(AddPtr &p, const Key &k, MoveRef<Value> v) {
Entry *pentry;
if (!impl.add(p, &pentry))
return false;
const_cast<Key &>(pentry->key) = k;
pentry->value = v;
return true;
}
bool add(AddPtr &p, const Key &k) {
Entry *pentry;
if (!impl.add(p, &pentry))
return false;
const_cast<Key &>(pentry->key) = k;
return true;
}
template<typename KeyInput, typename ValueInput>
bool relookupOrAdd(AddPtr &p, const KeyInput &k, const ValueInput &v) {
return impl.relookupOrAdd(p, k, Entry(k, v));
}
/*
* |all()| returns a Range containing |count()| elements. E.g.:
*
* typedef HashMap<int,char> HM;
* HM h;
* for (HM::Range r = h.all(); !r.empty(); r.popFront())
* char c = r.front().value;
*
* Also see the definition of Range in HashTable above (with T = Entry).
*/
typedef typename Impl::Range Range;
Range all() const { return impl.all(); }
uint32_t count() const { return impl.count(); }
size_t capacity() const { return impl.capacity(); }
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return impl.sizeOfExcludingThis(mallocSizeOf);
}
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
/*
* Don't just call |impl.sizeOfExcludingThis()| because there's no
* guarantee that |impl| is the first field in HashMap.
*/
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
}
/*
* Typedef for the enumeration class. An Enum may be used to examine and
* remove table entries:
*
* typedef HashMap<int,char> HM;
* HM s;
* for (HM::Enum e(s); !e.empty(); e.popFront())
* if (e.front().value == 'l')
* e.removeFront();
*
* Table resize may occur in Enum's destructor. Also see the definition of
* Enum in HashTable above (with T = Entry).
*/
typedef typename Impl::Enum Enum;
/*
* Remove all entries. This does not shrink the table. For that consider
* using the finish() method.
*/
void clear() { impl.clear(); }
/*
* Remove all the entries and release all internal buffers. The map must
* be initialized again before any use.
*/
void finish() { impl.finish(); }
/* Does the table contain any entries? */
bool empty() const { return impl.empty(); }
/*
* If |generation()| is the same before and after a HashMap operation,
* pointers into the table remain valid.
*/
unsigned generation() const { return impl.generation(); }
/* Shorthand operations: */
bool has(const Lookup &l) const {
return impl.lookup(l) != NULL;
}
/* Overwrite existing value with v. Return NULL on oom. */
template<typename KeyInput, typename ValueInput>
Entry *put(const KeyInput &k, const ValueInput &v) {
AddPtr p = lookupForAdd(k);
if (p) {
p->value = v;
return &*p;
}
return add(p, k, v) ? &*p : NULL;
}
/* Like put, but assert that the given key is not already present. */
bool putNew(const Key &k, const Value &v) {
AddPtr p = lookupForAdd(k);
JS_ASSERT(!p);
return add(p, k, v);
}
/* Add (k,defaultValue) if k no found. Return false-y Ptr on oom. */
Ptr lookupWithDefault(const Key &k, const Value &defaultValue) {
AddPtr p = lookupForAdd(k);
if (p)
return p;
(void)add(p, k, defaultValue); /* p is left false-y on oom. */
return p;
}
/* Remove if present. */
void remove(const Lookup &l) {
if (Ptr p = lookup(l))
remove(p);
}
};
/*
* JS-friendly, STL-like container providing a hash-based set of values. In
* particular, HashSet calls constructors and destructors of all objects added
* so non-PODs may be used safely.
*
* T requirements:
* - default constructible, copyable, destructible, assignable
* HashPolicy requirements:
* - see "Hash policy" above (default js::DefaultHasher<Key>)
* AllocPolicy:
* - see "Allocation policies" in jsalloc.h
*
* N.B: HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
* HashSet must not call back into the same HashSet object.
* N.B: Due to the lack of exception handling, the user must call |init()|.
*/
template <class T, class HashPolicy = DefaultHasher<T>, class AllocPolicy = TempAllocPolicy>
class HashSet
{
typedef typename HashPolicy::Lookup Lookup;
/* Implement HashSet in terms of HashTable. */
struct SetOps : HashPolicy {
typedef T KeyType;
static const KeyType &getKey(const T &t) { return t; }
};
typedef detail::HashTable<const T, SetOps, AllocPolicy> Impl;
friend class Impl::Enum;
/* Not implicitly copyable (expensive). May add explicit |clone| later. */
HashSet(const HashSet &);
HashSet &operator=(const HashSet &);
Impl impl;
public:
/*
* HashSet construction is fallible (due to OOM); thus the user must call
* init after constructing a HashSet and check the return value.
*/
HashSet(AllocPolicy a = AllocPolicy()) : impl(a) {}
bool init(uint32_t len = Impl::sDefaultInitSize) { return impl.init(len); }
bool initialized() const { return impl.initialized(); }
/*
* Return whether the given lookup value is present in the map. E.g.:
*
* typedef HashSet<int> HS;
* HS h;
* if (HS::Ptr p = h.lookup(3)) {
* assert(*p == 3); // p acts like a pointer to int
* }
*
* Also see the definition of Ptr in HashTable above.
*/
typedef typename Impl::Ptr Ptr;
Ptr lookup(const Lookup &l) const { return impl.lookup(l); }
/* Assuming |p.found()|, remove |*p|. */
void remove(Ptr p) { impl.remove(p); }
/*
* Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
* insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
* |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
*
* typedef HashSet<int> HS;
* HS h;
* HS::AddPtr p = h.lookupForAdd(3);
* if (!p) {
* if (!h.add(p, 3))
* return false;
* }
* assert(*p == 3); // p acts like a pointer to int
*
* Also see the definition of AddPtr in HashTable above.
*
* N.B. The caller must ensure that no mutating hash table operations
* occur between a pair of |lookupForAdd| and |add| calls. To avoid
* looking up the key a second time, the caller may use the more efficient
* relookupOrAdd method. This method reuses part of the hashing computation
* to more efficiently insert the key if it has not been added. For
* example, a mutation-handling version of the previous example:
*
* HS::AddPtr p = h.lookupForAdd(3);
* if (!p) {
* call_that_may_mutate_h();
* if (!h.relookupOrAdd(p, 3, 3))
* return false;
* }
* assert(*p == 3);
*
* Note that relookupOrAdd(p,l,t) performs Lookup using l and adds the
* entry t, where the caller ensures match(l,t).
*/
typedef typename Impl::AddPtr AddPtr;
AddPtr lookupForAdd(const Lookup &l) const {
return impl.lookupForAdd(l);
}
bool add(AddPtr &p, const T &t) {
return impl.add(p, t);
}
bool relookupOrAdd(AddPtr &p, const Lookup &l, const T &t) {
return impl.relookupOrAdd(p, l, t);
}
/*
* |all()| returns a Range containing |count()| elements:
*
* typedef HashSet<int> HS;
* HS h;
* for (HS::Range r = h.all(); !r.empty(); r.popFront())
* int i = r.front();
*
* Also see the definition of Range in HashTable above.
*/
typedef typename Impl::Range Range;
Range all() const { return impl.all(); }
uint32_t count() const { return impl.count(); }
size_t capacity() const { return impl.capacity(); }
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const {
return impl.sizeOfExcludingThis(mallocSizeOf);
}
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const {
/*
* Don't just call |impl.sizeOfExcludingThis()| because there's no
* guarantee that |impl| is the first field in HashSet.
*/
return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
}
/*
* Typedef for the enumeration class. An Enum may be used to examine and
* remove table entries:
*
* typedef HashSet<int> HS;
* HS s;
* for (HS::Enum e(s); !e.empty(); e.popFront())
* if (e.front() == 42)
* e.removeFront();
*
* Table resize may occur in Enum's destructor. Also see the definition of
* Enum in HashTable above.
*/
typedef typename Impl::Enum Enum;
/*
* Remove all entries. This does not shrink the table. For that consider
* using the finish() method.
*/
void clear() { impl.clear(); }
/*
* Remove all the entries and release all internal buffers. The set must
* be initialized again before any use.
*/
void finish() { impl.finish(); }
/* Does the table contain any entries? */
bool empty() const { return impl.empty(); }
/*
* If |generation()| is the same before and after a HashSet operation,
* pointers into the table remain valid.
*/
unsigned generation() const { return impl.generation(); }
/* Shorthand operations: */
bool has(const Lookup &l) const {
return impl.lookup(l) != NULL;
}
/* Overwrite existing value with v. Return NULL on oom. */
const T *put(const T &t) {
AddPtr p = lookupForAdd(t);
return p ? &*p : (add(p, t) ? &*p : NULL);
}
/* Like put, but assert that the given key is not already present. */
bool putNew(const T &t) {
AddPtr p = lookupForAdd(t);
JS_ASSERT(!p);
return add(p, t);
}
bool putNew(const Lookup &l, const T &t) {
AddPtr p = lookupForAdd(l);
JS_ASSERT(!p);
return add(p, t);
}
void remove(const Lookup &l) {
if (Ptr p = lookup(l))
remove(p);
}
};
} /* namespace js */
#endif