axmol/cocos/audio/android/AudioResampler.h

182 lines
6.5 KiB
C
Raw Normal View History

[big refactoring] Audio latency fix for Android. Support to preload effects on Android now. (#15875) * Audio latency fix for Android. Support preload effects on Android now. Squashed commits: [b6d80fe] log fix [a0a918e] Fixes assetFd didn't be released while PcmData is returned from cache. [4b956ba] Potential crash fix for PcmAudioPlayer while pause / resume. [398ab8c] Updates LOG_TAG position in AudioEngine-inl.cpp [e3634e7] include stdlib.h for posix_memalign [9004074] fixes setVolume logical error. [c96df46] Don't use another thread for mixing, enqueue is in a seperated thread, therefore doing mixing in another thread will waste more time. [0a4c1a8] Adds setLoop, setVolume, setPostion support for Track [c35fb20] Fixed include. [cdd9d32] Do mixing by ourself. (TO BE POLISHED) [6447025] µ -> u since µ could not be shown on some android devices. [97be0c6] Don't send a silence clip. [c1607ed] Make linter.py happy. [0898b54] Puts enqueue & SetPlayState in PcmAudioPlayer::play to thread pool. [b79fc01] Adds getDuration, getPosition support for PcmAudioPlayer [80fa2ab] minor fix of the code position of resetting state to State::INITIALIZED [d9c62f1] underrun fix for PcmAudioPlayer. [9c2212a] UrlAudioPlayer, playOverMutex should be static, and should be used in update method. [1519d2e] static variables [19da936] _pcmAudioPlayer Null pointer check in AudioPlayerProvider. [e6b0d14] Updates audio performance test. [fc01dd4] Registers foreground & background event in AudioEngine-inl.cpp(android), the callback should invoke `provider`'s pause & resume method. [e00a886] TBD: Pause & resume support for PcmAudioPlayerPool. Since OpenSLES audio resources are expensive and device shared, we should delete all unused PcmAudioPlayers in pool while pause and re-create them while resume. But this commit isn't finished yet, I don't find a better way to register pause&resume event in AudioEngine module. [9e42ea3] Interleave mono audio to stereo audio. PcmAudioPlayerPool only contains PcmAudioPlayers with 2 channels. [3f18d05] Adds a strategy for checking small size of different file formats. [753ff49] Adds performance test for AudioEngine. [09d3045] Releases an extra PcmAudioPlayer for UrlAudioPlayer while allocating PcmAudioPlayer fails. [9dd4477] Using std::move for PcmData move constructor & move assignment. [6ca3bcb] some fixes: 1) new -> new (std::nothrow) 2) break if allocate PcmAudioPlayer fails 3) renames 'initForPlayPcmData' to 'init' 4) PcmAudioPlayer destructor deadlock if 'init' failed [54675b6] include path fix. [a1903ca] More refactorings. [19b9498] Makes linter.py happy. :) [923c530] Fixes: 1) Avoid getFileInfo to be invoked twice 2) A critical bug fix for UrlAudioPlayer and adds detailed comments 3) __clang__ compiler option fix for AudioResamplerSinc.cpp. [5ec4faf] minor fix. [faaa0f3] output a log in the destructor of UrlAudioPlayer. [9c20355] NewAudioEngineTest,TestControll crash fix. [f114464] fixes an unused import. [1dc5dab] Better algorithm for allocating PcmAudioPlayer. [331a213] minor fix. [e54084a] null -> nullptr [f9a0389] Support uncache. [89a364f] Removes unused update, and TODO uncache functionality. [1732bf9] Supports AudioEngineImpl::setFinishCallback for android. [43d1596] UrlAudioPlayer::stop fix. [e2ee941] Test case fix in NewAudioEngineTest/AudioIssue11143Test [5c5ba01] More fixes for making cpp-tests/New Audio Engine Test happy. [8b554a3] Adds log while remove player from map. [ed71322] If original file is larger than 30k bytes, consider it's a large audio file. [fb1845a] Updates project.properties [6f3839f] minor log output fix in AudioEngine-inl.cpp [c68bc6c] Don't resample if the sample rate of the decoded pcm data matchs the device's. [43ca45f] PcmAudioPlayers also need to be removed while they play over, but should not be deleted since their lifecycle is managed by PcmAudioPlayerPool. [f5e63c9] Audio latency fix for Android. Support preload effects on Android now. * Supports to loading audio files asynchronously. * Crash fix for stop audio right after play2d. * Minor fix for logic in AudioMixerController.cpp * Adds missing files (CCThreadPool.h/.cpp). * Minor fix for including. * Minor fix for missing include <functional> in Track.h * update license information in audio.h * Don't use std::future/std::promise anymore since ndk counldn't support it well in armeabi arch. * isSmallFile postion updated, fixes large audio file goto the checking logic of cache. * std::atomic<int> isn't supported by ndk-r10e while compiling with `armeabi` arch, using a int with a mutex instead. * fixes __isnanf & posix_memalign doesn't exist on low api (<=16) devices. * namespace updated: cocos2d -> cocos2d::experimental * Removes commented code in AudioMixerController.h/.cpp * Removes unused code again, and fixes a memory leak of `Track` instance. * Oops, namespace changed. * Only outputs log in debug mode. * Uses ALOGV for outputing logs in AudioEngine-inl.cpp * const PcmData& -> PcmData for Track * Fixes a protential crash in NewAudioEngineTest * Adds `COCOS` prefix in header #ifndef COCOS_BALABALA #define COCOS_BALABALA * Uses _ prefix for cocos code style instead of `m` prefix. * Deletes AudioResamplerSinc related files. * Bug fix from @minggo's reply on github. * Don't need to invoke pause after in UrlAudioPlayer::prepare. * Updates ThreadPool class, uses enum class and adds const keyword.
2016-07-18 10:22:40 +08:00
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <stdint.h>
#include <sys/types.h>
#include <android/log.h>
#include <sys/system_properties.h>
#include "audio/android/AudioBufferProvider.h"
//#include <cutils/compiler.h>
//#include <utils/Compat.h>
//#include <media/AudioBufferProvider.h>
//#include <system/audio.h>
#include <assert.h>
#include "audio/android/audio.h"
namespace cocos2d { namespace experimental {
class AudioResampler {
public:
// Determines quality of SRC.
// LOW_QUALITY: linear interpolator (1st order)
// MED_QUALITY: cubic interpolator (3rd order)
// HIGH_QUALITY: fixed multi-tap FIR (e.g. 48KHz->44.1KHz)
// NOTE: high quality SRC will only be supported for
// certain fixed rate conversions. Sample rate cannot be
// changed dynamically.
enum src_quality {
DEFAULT_QUALITY=0,
LOW_QUALITY=1,
MED_QUALITY=2,
HIGH_QUALITY=3,
VERY_HIGH_QUALITY=4,
};
static const CONSTEXPR float UNITY_GAIN_FLOAT = 1.0f;
static AudioResampler* create(audio_format_t format, int inChannelCount,
int32_t sampleRate, src_quality quality=DEFAULT_QUALITY);
virtual ~AudioResampler();
virtual void init() = 0;
virtual void setSampleRate(int32_t inSampleRate);
virtual void setVolume(float left, float right);
virtual void setLocalTimeFreq(uint64_t freq);
// set the PTS of the next buffer output by the resampler
virtual void setPTS(int64_t pts);
// Resample int16_t samples from provider and accumulate into 'out'.
// A mono provider delivers a sequence of samples.
// A stereo provider delivers a sequence of interleaved pairs of samples.
//
// In either case, 'out' holds interleaved pairs of fixed-point Q4.27.
// That is, for a mono provider, there is an implicit up-channeling.
// Since this method accumulates, the caller is responsible for clearing 'out' initially.
//
// For a float resampler, 'out' holds interleaved pairs of float samples.
//
// Multichannel interleaved frames for n > 2 is supported for quality DYN_LOW_QUALITY,
// DYN_MED_QUALITY, and DYN_HIGH_QUALITY.
//
// Returns the number of frames resampled into the out buffer.
virtual size_t resample(int32_t* out, size_t outFrameCount,
AudioBufferProvider* provider) = 0;
virtual void reset();
virtual size_t getUnreleasedFrames() const { return mInputIndex; }
// called from destructor, so must not be virtual
src_quality getQuality() const { return mQuality; }
protected:
// number of bits for phase fraction - 30 bits allows nearly 2x downsampling
static const int kNumPhaseBits = 30;
// phase mask for fraction
static const uint32_t kPhaseMask = (1LU<<kNumPhaseBits)-1;
// multiplier to calculate fixed point phase increment
static const double kPhaseMultiplier;
AudioResampler(int inChannelCount, int32_t sampleRate, src_quality quality);
// prevent copying
AudioResampler(const AudioResampler&);
AudioResampler& operator=(const AudioResampler&);
int64_t calculateOutputPTS(int outputFrameIndex);
const int32_t mChannelCount;
const int32_t mSampleRate;
int32_t mInSampleRate;
AudioBufferProvider::Buffer mBuffer;
union {
int16_t mVolume[2];
uint32_t mVolumeRL;
};
int16_t mTargetVolume[2];
size_t mInputIndex;
int32_t mPhaseIncrement;
uint32_t mPhaseFraction;
uint64_t mLocalTimeFreq;
int64_t mPTS;
// returns the inFrameCount required to generate outFrameCount frames.
//
// Placed here to be a consistent for all resamplers.
//
// Right now, we use the upper bound without regards to the current state of the
// input buffer using integer arithmetic, as follows:
//
// (static_cast<uint64_t>(outFrameCount)*mInSampleRate + (mSampleRate - 1))/mSampleRate;
//
// The double precision equivalent (float may not be precise enough):
// ceil(static_cast<double>(outFrameCount) * mInSampleRate / mSampleRate);
//
// this relies on the fact that the mPhaseIncrement is rounded down from
// #phases * mInSampleRate/mSampleRate and the fact that Sum(Floor(x)) <= Floor(Sum(x)).
// http://www.proofwiki.org/wiki/Sum_of_Floors_Not_Greater_Than_Floor_of_Sums
//
// (so long as double precision is computed accurately enough to be considered
// greater than or equal to the Floor(x) value in int32_t arithmetic; thus this
// will not necessarily hold for floats).
//
// TODO:
// Greater accuracy and a tight bound is obtained by:
// 1) subtract and adjust for the current state of the AudioBufferProvider buffer.
// 2) using the exact integer formula where (ignoring 64b casting)
// inFrameCount = (mPhaseIncrement * (outFrameCount - 1) + mPhaseFraction) / phaseWrapLimit;
// phaseWrapLimit is the wraparound (1 << kNumPhaseBits), if not specified explicitly.
//
inline size_t getInFrameCountRequired(size_t outFrameCount) {
return (static_cast<uint64_t>(outFrameCount)*mInSampleRate
+ (mSampleRate - 1))/mSampleRate;
}
inline float clampFloatVol(float volume) {
if (volume > UNITY_GAIN_FLOAT) {
return UNITY_GAIN_FLOAT;
} else if (volume >= 0.) {
return volume;
}
return 0.; // NaN or negative volume maps to 0.
}
private:
const src_quality mQuality;
// Return 'true' if the quality level is supported without explicit request
static bool qualityIsSupported(src_quality quality);
// For pthread_once()
static void init_routine();
// Return the estimated CPU load for specific resampler in MHz.
// The absolute number is irrelevant, it's the relative values that matter.
static uint32_t qualityMHz(src_quality quality);
};
// ----------------------------------------------------------------------------
}} // namespace cocos2d { namespace experimental {