axmol/cocos/math/Vector2.h

448 lines
12 KiB
C
Raw Normal View History

2014-04-02 10:33:07 +08:00
#ifndef VECTOR2_H_
#define VECTOR2_H_
namespace gameplay
{
class Matrix;
/**
* Defines a 2-element floating point vector.
*/
class Vector2
{
public:
/**
* The x coordinate.
*/
float x;
/**
* The y coordinate.
*/
float y;
/**
* Constructs a new vector initialized to all zeros.
*/
Vector2();
/**
* Constructs a new vector initialized to the specified values.
*
* @param x The x coordinate.
* @param y The y coordinate.
*/
Vector2(float x, float y);
/**
* Constructs a new vector from the values in the specified array.
*
* @param array An array containing the elements of the vector in the order x, y.
*/
Vector2(const float* array);
/**
* Constructs a vector that describes the direction between the specified points.
*
* @param p1 The first point.
* @param p2 The second point.
*/
Vector2(const Vector2& p1, const Vector2& p2);
/**
* Constructs a new vector that is a copy of the specified vector.
*
* @param copy The vector to copy.
*/
Vector2(const Vector2& copy);
/**
* Destructor.
*/
~Vector2();
/**
* Returns the zero vector.
*
* @return The 2-element vector of 0s.
*/
static const Vector2& zero();
/**
* Returns the one vector.
*
* @return The 2-element vector of 1s.
*/
static const Vector2& one();
/**
* Returns the unit x vector.
*
* @return The 2-element unit vector along the x axis.
*/
static const Vector2& unitX();
/**
* Returns the unit y vector.
*
* @return The 2-element unit vector along the y axis.
*/
static const Vector2& unitY();
/**
* Indicates whether this vector contains all zeros.
*
* @return true if this vector contains all zeros, false otherwise.
*/
bool isZero() const;
/**
* Indicates whether this vector contains all ones.
*
* @return true if this vector contains all ones, false otherwise.
*/
bool isOne() const;
/**
* Returns the angle (in radians) between the specified vectors.
*
* @param v1 The first vector.
* @param v2 The second vector.
*
* @return The angle between the two vectors (in radians).
*/
static float angle(const Vector2& v1, const Vector2& v2);
/**
* Adds the elements of the specified vector to this one.
*
* @param v The vector to add.
*/
void add(const Vector2& v);
/**
* Adds the specified vectors and stores the result in dst.
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst A vector to store the result in.
*/
static void add(const Vector2& v1, const Vector2& v2, Vector2* dst);
/**
* Clamps this vector within the specified range.
*
* @param min The minimum value.
* @param max The maximum value.
*/
void clamp(const Vector2& min, const Vector2& max);
/**
* Clamps the specified vector within the specified range and returns it in dst.
*
* @param v The vector to clamp.
* @param min The minimum value.
* @param max The maximum value.
* @param dst A vector to store the result in.
*/
static void clamp(const Vector2& v, const Vector2& min, const Vector2& max, Vector2* dst);
/**
* Returns the distance between this vector and v.
*
* @param v The other vector.
*
* @return The distance between this vector and v.
*
* @see distanceSquared
*/
float distance(const Vector2& v) const;
/**
* Returns the squared distance between this vector and v.
*
* When it is not necessary to get the exact distance between
* two vectors (for example, when simply comparing the
* distance between different vectors), it is advised to use
* this method instead of distance.
*
* @param v The other vector.
*
* @return The squared distance between this vector and v.
*
* @see distance
*/
float distanceSquared(const Vector2& v) const;
/**
* Returns the dot product of this vector and the specified vector.
*
* @param v The vector to compute the dot product with.
*
* @return The dot product.
*/
float dot(const Vector2& v) const;
/**
* Returns the dot product between the specified vectors.
*
* @param v1 The first vector.
* @param v2 The second vector.
*
* @return The dot product between the vectors.
*/
static float dot(const Vector2& v1, const Vector2& v2);
/**
* Computes the length of this vector.
*
* @return The length of the vector.
*
* @see lengthSquared
*/
float length() const;
/**
* Returns the squared length of this vector.
*
* When it is not necessary to get the exact length of a
* vector (for example, when simply comparing the lengths of
* different vectors), it is advised to use this method
* instead of length.
*
* @return The squared length of the vector.
*
* @see length
*/
float lengthSquared() const;
/**
* Negates this vector.
*/
void negate();
/**
* Normalizes this vector.
*
* This method normalizes this Vector2 so that it is of
* unit length (in other words, the length of the vector
* after calling this method will be 1.0f). If the vector
* already has unit length or if the length of the vector
* is zero, this method does nothing.
*
* @return This vector, after the normalization occurs.
*/
Vector2& normalize();
/**
* Normalizes this vector and stores the result in dst.
*
* If the vector already has unit length or if the length
* of the vector is zero, this method simply copies the
* current vector into dst.
*
* @param dst The destination vector.
*/
void normalize(Vector2* dst) const;
/**
* Scales all elements of this vector by the specified value.
*
* @param scalar The scalar value.
*/
void scale(float scalar);
/**
* Scales each element of this vector by the matching component of scale.
*
* @param scale The vector to scale by.
*/
void scale(const Vector2& scale);
/**
* Rotates this vector by angle (specified in radians) around the given point.
*
* @param point The point to rotate around.
* @param angle The angle to rotate by (in radians).
*/
void rotate(const Vector2& point, float angle);
/**
* Sets the elements of this vector to the specified values.
*
* @param x The new x coordinate.
* @param y The new y coordinate.
*/
void set(float x, float y);
/**
* Sets the elements of this vector from the values in the specified array.
*
* @param array An array containing the elements of the vector in the order x, y.
*/
void set(const float* array);
/**
* Sets the elements of this vector to those in the specified vector.
*
* @param v The vector to copy.
*/
void set(const Vector2& v);
/**
* Sets this vector to the directional vector between the specified points.
*
* @param p1 The first point.
* @param p2 The second point.
*/
void set(const Vector2& p1, const Vector2& p2);
/**
* Subtracts this vector and the specified vector as (this - v)
* and stores the result in this vector.
*
* @param v The vector to subtract.
*/
void subtract(const Vector2& v);
/**
* Subtracts the specified vectors and stores the result in dst.
* The resulting vector is computed as (v1 - v2).
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst The destination vector.
*/
static void subtract(const Vector2& v1, const Vector2& v2, Vector2* dst);
/**
* Updates this vector towards the given target using a smoothing function.
* The given response time determines the amount of smoothing (lag). A longer
* response time yields a smoother result and more lag. To force this vector to
* follow the target closely, provide a response time that is very small relative
* to the given elapsed time.
*
* @param target target value.
* @param elapsedTime elapsed time between calls.
* @param responseTime response time (in the same units as elapsedTime).
*/
void smooth(const Vector2& target, float elapsedTime, float responseTime);
/**
* Calculates the sum of this vector with the given vector.
*
* Note: this does not modify this vector.
*
* @param v The vector to add.
* @return The vector sum.
*/
inline const Vector2 operator+(const Vector2& v) const;
/**
* Adds the given vector to this vector.
*
* @param v The vector to add.
* @return This vector, after the addition occurs.
*/
inline Vector2& operator+=(const Vector2& v);
/**
* Calculates the sum of this vector with the given vector.
*
* Note: this does not modify this vector.
*
* @param v The vector to add.
* @return The vector sum.
*/
inline const Vector2 operator-(const Vector2& v) const;
/**
* Subtracts the given vector from this vector.
*
* @param v The vector to subtract.
* @return This vector, after the subtraction occurs.
*/
inline Vector2& operator-=(const Vector2& v);
/**
* Calculates the negation of this vector.
*
* Note: this does not modify this vector.
*
* @return The negation of this vector.
*/
inline const Vector2 operator-() const;
/**
* Calculates the scalar product of this vector with the given value.
*
* Note: this does not modify this vector.
*
* @param x The value to scale by.
* @return The scaled vector.
*/
inline const Vector2 operator*(float x) const;
/**
* Scales this vector by the given value.
*
* @param x The value to scale by.
* @return This vector, after the scale occurs.
*/
inline Vector2& operator*=(float x);
/**
* Returns the components of this vector divided by the given constant
*
* Note: this does not modify this vector.
*
* @param x the constant to divide this vector with
* @return a smaller vector
*/
inline const Vector2 operator/(float x) const;
/**
* Determines if this vector is less than the given vector.
*
* @param v The vector to compare against.
*
* @return True if this vector is less than the given vector, false otherwise.
*/
inline bool operator<(const Vector2& v) const;
/**
* Determines if this vector is equal to the given vector.
*
* @param v The vector to compare against.
*
* @return True if this vector is equal to the given vector, false otherwise.
*/
inline bool operator==(const Vector2& v) const;
/**
* Determines if this vector is not equal to the given vector.
*
* @param v The vector to compare against.
*
* @return True if this vector is not equal to the given vector, false otherwise.
*/
inline bool operator!=(const Vector2& v) const;
};
/**
* Calculates the scalar product of the given vector with the given value.
*
* @param x The value to scale by.
* @param v The vector to scale.
* @return The scaled vector.
*/
inline const Vector2 operator*(float x, const Vector2& v);
}
#include "Vector2.inl"
#endif