axmol/3rdparty/webp/sharpyuv/sharpyuv.c

575 lines
21 KiB
C
Raw Normal View History

// Copyright 2022 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Sharp RGB to YUV conversion.
//
// Author: Skal (pascal.massimino@gmail.com)
#include "sharpyuv/sharpyuv.h"
#include <assert.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "src/webp/types.h"
#include "sharpyuv/sharpyuv_cpu.h"
#include "sharpyuv/sharpyuv_dsp.h"
#include "sharpyuv/sharpyuv_gamma.h"
//------------------------------------------------------------------------------
int SharpYuvGetVersion(void) {
return SHARPYUV_VERSION;
}
//------------------------------------------------------------------------------
// Sharp RGB->YUV conversion
static const int kNumIterations = 4;
#define YUV_FIX 16 // fixed-point precision for RGB->YUV
static const int kYuvHalf = 1 << (YUV_FIX - 1);
// Max bit depth so that intermediate calculations fit in 16 bits.
static const int kMaxBitDepth = 14;
// Returns the precision shift to use based on the input rgb_bit_depth.
static int GetPrecisionShift(int rgb_bit_depth) {
// Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove
// bits if needed.
return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2
: (kMaxBitDepth - rgb_bit_depth);
}
typedef int16_t fixed_t; // signed type with extra precision for UV
typedef uint16_t fixed_y_t; // unsigned type with extra precision for W
//------------------------------------------------------------------------------
static uint8_t clip_8b(fixed_t v) {
return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u;
}
static uint16_t clip(fixed_t v, int max) {
return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v;
}
static fixed_y_t clip_bit_depth(int y, int bit_depth) {
const int max = (1 << bit_depth) - 1;
return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max;
}
//------------------------------------------------------------------------------
static int RGBToGray(int64_t r, int64_t g, int64_t b) {
const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf;
return (int)(luma >> YUV_FIX);
}
static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
int rgb_bit_depth,
SharpYuvTransferFunctionType transfer_type) {
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
const uint32_t A = SharpYuvGammaToLinear(a, bit_depth, transfer_type);
const uint32_t B = SharpYuvGammaToLinear(b, bit_depth, transfer_type);
const uint32_t C = SharpYuvGammaToLinear(c, bit_depth, transfer_type);
const uint32_t D = SharpYuvGammaToLinear(d, bit_depth, transfer_type);
return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth,
transfer_type);
}
static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w,
int rgb_bit_depth,
SharpYuvTransferFunctionType transfer_type) {
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
int i = 0;
do {
const uint32_t R =
SharpYuvGammaToLinear(src[0 * w + i], bit_depth, transfer_type);
const uint32_t G =
SharpYuvGammaToLinear(src[1 * w + i], bit_depth, transfer_type);
const uint32_t B =
SharpYuvGammaToLinear(src[2 * w + i], bit_depth, transfer_type);
const uint32_t Y = RGBToGray(R, G, B);
dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth, transfer_type);
} while (++i < w);
}
static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2,
fixed_t* dst, int uv_w, int rgb_bit_depth,
SharpYuvTransferFunctionType transfer_type) {
int i = 0;
do {
const int r =
ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0],
src2[0 * uv_w + 1], rgb_bit_depth, transfer_type);
const int g =
ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0],
src2[2 * uv_w + 1], rgb_bit_depth, transfer_type);
const int b =
ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0],
src2[4 * uv_w + 1], rgb_bit_depth, transfer_type);
const int W = RGBToGray(r, g, b);
dst[0 * uv_w] = (fixed_t)(r - W);
dst[1 * uv_w] = (fixed_t)(g - W);
dst[2 * uv_w] = (fixed_t)(b - W);
dst += 1;
src1 += 2;
src2 += 2;
} while (++i < uv_w);
}
static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) {
int i = 0;
assert(w > 0);
do {
y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]);
} while (++i < w);
}
//------------------------------------------------------------------------------
static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) {
const int v0 = (A * 3 + B + 2) >> 2;
return clip_bit_depth(v0 + W0, bit_depth);
}
//------------------------------------------------------------------------------
static WEBP_INLINE int Shift(int v, int shift) {
return (shift >= 0) ? (v << shift) : (v >> -shift);
}
static void ImportOneRow(const uint8_t* const r_ptr,
const uint8_t* const g_ptr,
const uint8_t* const b_ptr,
int rgb_step,
int rgb_bit_depth,
int pic_width,
fixed_y_t* const dst) {
// Convert the rgb_step from a number of bytes to a number of uint8_t or
// uint16_t values depending the bit depth.
const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step;
int i = 0;
const int w = (pic_width + 1) & ~1;
do {
const int off = i * step;
const int shift = GetPrecisionShift(rgb_bit_depth);
if (rgb_bit_depth == 8) {
dst[i + 0 * w] = Shift(r_ptr[off], shift);
dst[i + 1 * w] = Shift(g_ptr[off], shift);
dst[i + 2 * w] = Shift(b_ptr[off], shift);
} else {
dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift);
dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift);
dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift);
}
} while (++i < pic_width);
if (pic_width & 1) { // replicate rightmost pixel
dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1];
dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1];
dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1];
}
}
static void InterpolateTwoRows(const fixed_y_t* const best_y,
const fixed_t* prev_uv,
const fixed_t* cur_uv,
const fixed_t* next_uv,
int w,
fixed_y_t* out1,
fixed_y_t* out2,
int rgb_bit_depth) {
const int uv_w = w >> 1;
const int len = (w - 1) >> 1; // length to filter
int k = 3;
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
while (k-- > 0) { // process each R/G/B segments in turn
// special boundary case for i==0
out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth);
out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth);
SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1,
bit_depth);
SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1,
bit_depth);
// special boundary case for i == w - 1 when w is even
if (!(w & 1)) {
out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1],
best_y[w - 1 + 0], bit_depth);
out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1],
best_y[w - 1 + w], bit_depth);
}
out1 += w;
out2 += w;
prev_uv += uv_w;
cur_uv += uv_w;
next_uv += uv_w;
}
}
static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b,
const int coeffs[4], int sfix) {
const int srounder = 1 << (YUV_FIX + sfix - 1);
const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b +
coeffs[3] + srounder;
return (luma >> (YUV_FIX + sfix));
}
static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv,
uint8_t* y_ptr, int y_stride, uint8_t* u_ptr,
int u_stride, uint8_t* v_ptr, int v_stride,
int rgb_bit_depth,
int yuv_bit_depth, int width, int height,
const SharpYuvConversionMatrix* yuv_matrix) {
int i, j;
const fixed_t* const best_uv_base = best_uv;
const int w = (width + 1) & ~1;
const int h = (height + 1) & ~1;
const int uv_w = w >> 1;
const int uv_h = h >> 1;
const int sfix = GetPrecisionShift(rgb_bit_depth);
const int yuv_max = (1 << yuv_bit_depth) - 1;
best_uv = best_uv_base;
j = 0;
do {
i = 0;
do {
const int off = (i >> 1);
const int W = best_y[i];
const int r = best_uv[off + 0 * uv_w] + W;
const int g = best_uv[off + 1 * uv_w] + W;
const int b = best_uv[off + 2 * uv_w] + W;
const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix);
if (yuv_bit_depth <= 8) {
y_ptr[i] = clip_8b(y);
} else {
((uint16_t*)y_ptr)[i] = clip(y, yuv_max);
}
} while (++i < width);
best_y += w;
best_uv += (j & 1) * 3 * uv_w;
y_ptr += y_stride;
} while (++j < height);
best_uv = best_uv_base;
j = 0;
do {
i = 0;
do {
// Note r, g and b values here are off by W, but a constant offset on all
// 3 components doesn't change the value of u and v with a YCbCr matrix.
const int r = best_uv[i + 0 * uv_w];
const int g = best_uv[i + 1 * uv_w];
const int b = best_uv[i + 2 * uv_w];
const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix);
const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix);
if (yuv_bit_depth <= 8) {
u_ptr[i] = clip_8b(u);
v_ptr[i] = clip_8b(v);
} else {
((uint16_t*)u_ptr)[i] = clip(u, yuv_max);
((uint16_t*)v_ptr)[i] = clip(v, yuv_max);
}
} while (++i < uv_w);
best_uv += 3 * uv_w;
u_ptr += u_stride;
v_ptr += v_stride;
} while (++j < uv_h);
return 1;
}
//------------------------------------------------------------------------------
// Main function
static void* SafeMalloc(uint64_t nmemb, size_t size) {
const uint64_t total_size = nmemb * (uint64_t)size;
if (total_size != (size_t)total_size) return NULL;
return malloc((size_t)total_size);
}
#define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((uint64_t)(W) * (H), sizeof(T)))
static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr,
const uint8_t* b_ptr, int rgb_step, int rgb_stride,
int rgb_bit_depth, uint8_t* y_ptr, int y_stride,
uint8_t* u_ptr, int u_stride, uint8_t* v_ptr,
int v_stride, int yuv_bit_depth, int width,
int height,
const SharpYuvConversionMatrix* yuv_matrix,
SharpYuvTransferFunctionType transfer_type) {
// we expand the right/bottom border if needed
const int w = (width + 1) & ~1;
const int h = (height + 1) & ~1;
const int uv_w = w >> 1;
const int uv_h = h >> 1;
const int y_bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
uint64_t prev_diff_y_sum = ~0;
int j, iter;
// TODO(skal): allocate one big memory chunk. But for now, it's easier
// for valgrind debugging to have several chunks.
fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch
fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t);
fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t);
fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t);
fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t);
fixed_y_t* best_y = best_y_base;
fixed_y_t* target_y = target_y_base;
fixed_t* best_uv = best_uv_base;
fixed_t* target_uv = target_uv_base;
const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h);
int ok;
assert(w > 0);
assert(h > 0);
if (best_y_base == NULL || best_uv_base == NULL ||
target_y_base == NULL || target_uv_base == NULL ||
best_rgb_y == NULL || best_rgb_uv == NULL ||
tmp_buffer == NULL) {
ok = 0;
goto End;
}
// Import RGB samples to W/RGB representation.
for (j = 0; j < height; j += 2) {
const int is_last_row = (j == height - 1);
fixed_y_t* const src1 = tmp_buffer + 0 * w;
fixed_y_t* const src2 = tmp_buffer + 3 * w;
// prepare two rows of input
ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width,
src1);
if (!is_last_row) {
ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride,
rgb_step, rgb_bit_depth, width, src2);
} else {
memcpy(src2, src1, 3 * w * sizeof(*src2));
}
StoreGray(src1, best_y + 0, w);
StoreGray(src2, best_y + w, w);
UpdateW(src1, target_y, w, rgb_bit_depth, transfer_type);
UpdateW(src2, target_y + w, w, rgb_bit_depth, transfer_type);
UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth, transfer_type);
memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv));
best_y += 2 * w;
best_uv += 3 * uv_w;
target_y += 2 * w;
target_uv += 3 * uv_w;
r_ptr += 2 * rgb_stride;
g_ptr += 2 * rgb_stride;
b_ptr += 2 * rgb_stride;
}
// Iterate and resolve clipping conflicts.
for (iter = 0; iter < kNumIterations; ++iter) {
const fixed_t* cur_uv = best_uv_base;
const fixed_t* prev_uv = best_uv_base;
uint64_t diff_y_sum = 0;
best_y = best_y_base;
best_uv = best_uv_base;
target_y = target_y_base;
target_uv = target_uv_base;
j = 0;
do {
fixed_y_t* const src1 = tmp_buffer + 0 * w;
fixed_y_t* const src2 = tmp_buffer + 3 * w;
{
const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0);
InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w,
src1, src2, rgb_bit_depth);
prev_uv = cur_uv;
cur_uv = next_uv;
}
UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth, transfer_type);
UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth, transfer_type);
UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth, transfer_type);
// update two rows of Y and one row of RGB
diff_y_sum +=
SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w, y_bit_depth);
SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w);
best_y += 2 * w;
best_uv += 3 * uv_w;
target_y += 2 * w;
target_uv += 3 * uv_w;
j += 2;
} while (j < h);
// test exit condition
if (iter > 0) {
if (diff_y_sum < diff_y_threshold) break;
if (diff_y_sum > prev_diff_y_sum) break;
}
prev_diff_y_sum = diff_y_sum;
}
// final reconstruction
ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr,
u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth,
width, height, yuv_matrix);
End:
free(best_y_base);
free(best_uv_base);
free(target_y_base);
free(target_uv_base);
free(best_rgb_y);
free(best_rgb_uv);
free(tmp_buffer);
return ok;
}
#undef SAFE_ALLOC
#if defined(WEBP_USE_THREAD) && !defined(_WIN32)
#include <pthread.h> // NOLINT
#define LOCK_ACCESS \
static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \
if (pthread_mutex_lock(&sharpyuv_lock)) return
#define UNLOCK_ACCESS_AND_RETURN \
do { \
(void)pthread_mutex_unlock(&sharpyuv_lock); \
return; \
} while (0)
#else // !(defined(WEBP_USE_THREAD) && !defined(_WIN32))
#define LOCK_ACCESS do {} while (0)
#define UNLOCK_ACCESS_AND_RETURN return
#endif // defined(WEBP_USE_THREAD) && !defined(_WIN32)
// Hidden exported init function.
// By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed,
// users can declare it as extern and call it with an alternate VP8CPUInfo
// function.
extern VP8CPUInfo SharpYuvGetCPUInfo;
SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func);
void SharpYuvInit(VP8CPUInfo cpu_info_func) {
static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used =
(VP8CPUInfo)&sharpyuv_last_cpuinfo_used;
LOCK_ACCESS;
// Only update SharpYuvGetCPUInfo when called from external code to avoid a
// race on reading the value in SharpYuvConvert().
if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) {
SharpYuvGetCPUInfo = cpu_info_func;
}
if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) {
UNLOCK_ACCESS_AND_RETURN;
}
SharpYuvInitDsp();
SharpYuvInitGammaTables();
sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo;
UNLOCK_ACCESS_AND_RETURN;
}
int SharpYuvConvert(const void* r_ptr, const void* g_ptr, const void* b_ptr,
int rgb_step, int rgb_stride, int rgb_bit_depth,
void* y_ptr, int y_stride, void* u_ptr, int u_stride,
void* v_ptr, int v_stride, int yuv_bit_depth, int width,
int height, const SharpYuvConversionMatrix* yuv_matrix) {
SharpYuvOptions options;
options.yuv_matrix = yuv_matrix;
options.transfer_type = kSharpYuvTransferFunctionSrgb;
return SharpYuvConvertWithOptions(
r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, rgb_bit_depth, y_ptr, y_stride,
u_ptr, u_stride, v_ptr, v_stride, yuv_bit_depth, width, height, &options);
}
int SharpYuvOptionsInitInternal(const SharpYuvConversionMatrix* yuv_matrix,
SharpYuvOptions* options, int version) {
const int major = (version >> 24);
const int minor = (version >> 16) & 0xff;
if (options == NULL || yuv_matrix == NULL ||
(major == SHARPYUV_VERSION_MAJOR && major == 0 &&
minor != SHARPYUV_VERSION_MINOR) ||
(major != SHARPYUV_VERSION_MAJOR)) {
return 0;
}
options->yuv_matrix = yuv_matrix;
options->transfer_type = kSharpYuvTransferFunctionSrgb;
return 1;
}
int SharpYuvConvertWithOptions(const void* r_ptr, const void* g_ptr,
const void* b_ptr, int rgb_step, int rgb_stride,
int rgb_bit_depth, void* y_ptr, int y_stride,
void* u_ptr, int u_stride, void* v_ptr,
int v_stride, int yuv_bit_depth, int width,
int height, const SharpYuvOptions* options) {
const SharpYuvConversionMatrix* yuv_matrix = options->yuv_matrix;
SharpYuvTransferFunctionType transfer_type = options->transfer_type;
SharpYuvConversionMatrix scaled_matrix;
const int rgb_max = (1 << rgb_bit_depth) - 1;
const int rgb_round = 1 << (rgb_bit_depth - 1);
const int yuv_max = (1 << yuv_bit_depth) - 1;
const int sfix = GetPrecisionShift(rgb_bit_depth);
if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX ||
r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL ||
u_ptr == NULL || v_ptr == NULL) {
return 0;
}
if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 &&
rgb_bit_depth != 16) {
return 0;
}
if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) {
return 0;
}
if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride % 2 != 0)) {
// Step/stride should be even for uint16_t buffers.
return 0;
}
if (yuv_bit_depth > 8 &&
(y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) {
// Stride should be even for uint16_t buffers.
return 0;
}
// The address of the function pointer is used to avoid a read race.
SharpYuvInit((VP8CPUInfo)&SharpYuvGetCPUInfo);
// Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the
// rgb->yuv conversion matrix.
if (rgb_bit_depth == yuv_bit_depth) {
memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix));
} else {
int i;
for (i = 0; i < 3; ++i) {
scaled_matrix.rgb_to_y[i] =
(yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max;
scaled_matrix.rgb_to_u[i] =
(yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max;
scaled_matrix.rgb_to_v[i] =
(yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max;
}
}
// Also incorporate precision change scaling.
scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix);
scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix);
scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix);
return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride,
rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride,
v_ptr, v_stride, yuv_bit_depth, width, height,
&scaled_matrix, transfer_type);
}
//------------------------------------------------------------------------------