axmol/cocos/base/pvr.cpp

694 lines
20 KiB
C++
Raw Normal View History

2019-11-23 20:27:39 +08:00
/******************************************************************************
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
@File PVRTDecompress.cpp
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
@Title
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
@Copyright Copyright (C) 2000 - 2008 by Imagination Technologies Limited.
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
@Platform ANSI compatible
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
@Description PVRTC Texture Decompression.
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
******************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <math.h>
#include <string.h>
#include <assert.h>
#include <cstdint>
#include "base/pvr.h"
2021-12-25 10:04:45 +08:00
#define PVRT_MIN(a, b) (((a) < (b)) ? (a) : (b))
#define PVRT_MAX(a, b) (((a) > (b)) ? (a) : (b))
#define PVRT_CLAMP(x, l, h) (PVRT_MIN((h), PVRT_MAX((x), (l))))
2019-11-23 20:27:39 +08:00
/*****************************************************************************
* defines and consts
*****************************************************************************/
2021-12-25 10:04:45 +08:00
#define PT_INDEX (2) // The Punch-through index
2019-11-23 20:27:39 +08:00
2021-12-25 10:04:45 +08:00
#define BLK_Y_SIZE (4) // always 4 for all 2D block types
2019-11-23 20:27:39 +08:00
2021-12-25 10:04:45 +08:00
#define BLK_X_MAX (8) // Max X dimension for blocks
2019-11-23 20:27:39 +08:00
2021-12-25 10:04:45 +08:00
#define BLK_X_2BPP (8) // dimensions for the two formats
#define BLK_X_4BPP (4)
2019-11-23 20:27:39 +08:00
#define WRAP_COORD(Val, Size) ((Val) & ((Size)-1))
2021-12-25 10:04:45 +08:00
#define POWER_OF_2(X) util_number_is_power_2(X)
2019-11-23 20:27:39 +08:00
/*
Define an expression to either wrap or clamp large or small vals to the
legal coordinate range
*/
#define LIMIT_COORD(Val, Size, AssumeImageTiles) \
2021-12-25 10:04:45 +08:00
((AssumeImageTiles) ? WRAP_COORD((Val), (Size)) : PVRT_CLAMP((Val), 0, (Size)-1))
2019-11-23 20:27:39 +08:00
/*****************************************************************************
* Useful typedefs
*****************************************************************************/
typedef uint32_t U32;
typedef uint8_t U8;
/***********************************************************
DECOMPRESSION ROUTINES
************************************************************/
/*!***********************************************************************
@Struct AMTC_BLOCK_STRUCT
@Brief
*************************************************************************/
typedef struct
{
2021-12-25 10:04:45 +08:00
// Uses 64 bits pre block
U32 PackedData[2];
} AMTC_BLOCK_STRUCT;
2019-11-23 20:27:39 +08:00
2021-12-25 10:04:45 +08:00
static void PVRDecompress(AMTC_BLOCK_STRUCT* pCompressedData,
const bool Do2bitMode,
const int XDim,
const int YDim,
const int AssumeImageTiles,
unsigned char* pResultImage);
2019-11-23 20:27:39 +08:00
/*!***********************************************************************
@Function PVRTDecompressPVRTC
@Input pCompressedData The PVRTC texture data to decompress
@Input Do2bitMode Signifies whether the data is PVRTC2 or PVRTC4
@Input XDim X dimension of the texture
@Input YDim Y dimension of the texture
@Modified pResultImage The decompressed texture data
@Description Decompresses PVRTC to RGBA 8888
*************************************************************************/
2021-12-25 10:04:45 +08:00
int PVRTDecompressPVRTC(const void* const pCompressedData,
const int XDim,
const int YDim,
void* pDestData,
const bool Do2bitMode)
2019-11-23 20:27:39 +08:00
{
2021-12-25 10:04:45 +08:00
PVRDecompress((AMTC_BLOCK_STRUCT*)pCompressedData, Do2bitMode, XDim, YDim, 1, (unsigned char*)pDestData);
return XDim * YDim / 2;
2019-11-23 20:27:39 +08:00
}
/*!***********************************************************************
@Function util_number_is_power_2
@Input input A number
@Returns TRUE if the number is an integer power of two, else FALSE.
@Description Check that a number is an integer power of two, i.e.
1, 2, 4, 8, ... etc.
Returns FALSE for zero.
*************************************************************************/
2021-12-25 10:04:45 +08:00
int util_number_is_power_2(unsigned input)
2019-11-23 20:27:39 +08:00
{
unsigned minus1;
2021-12-25 10:04:45 +08:00
if (!input)
return 0;
2019-11-23 20:27:39 +08:00
minus1 = input - 1;
2021-12-25 10:04:45 +08:00
return ((input | minus1) == (input ^ minus1)) ? 1 : 0;
2019-11-23 20:27:39 +08:00
}
/*!***********************************************************************
@Function Unpack5554Colour
@Input pBlock
@Input ABColours
@Description Given a block, extract the colour information and convert
to 5554 formats
*************************************************************************/
2021-12-25 10:04:45 +08:00
static void Unpack5554Colour(const AMTC_BLOCK_STRUCT* pBlock, int ABColours[2][4])
2019-11-23 20:27:39 +08:00
{
2021-12-25 10:04:45 +08:00
U32 RawBits[2];
int i;
// Extract A and B
RawBits[0] = pBlock->PackedData[1] & (0xFFFE); // 15 bits (shifted up by one)
RawBits[1] = pBlock->PackedData[1] >> 16; // 16 bits
// step through both colours
for (i = 0; i < 2; i++)
{
// If completely opaque
if (RawBits[i] & (1 << 15))
{
// Extract R and G (both 5 bit)
ABColours[i][0] = (RawBits[i] >> 10) & 0x1F;
ABColours[i][1] = (RawBits[i] >> 5) & 0x1F;
/*
The precision of Blue depends on A or B. If A then we need to
replicate the top bit to get 5 bits in total
*/
ABColours[i][2] = RawBits[i] & 0x1F;
if (i == 0)
{
ABColours[0][2] |= ABColours[0][2] >> 4;
}
// set 4bit alpha fully on...
ABColours[i][3] = 0xF;
}
else // Else if colour has variable translucency
{
/*
Extract R and G (both 4 bit).
(Leave a space on the end for the replication of bits
*/
ABColours[i][0] = (RawBits[i] >> (8 - 1)) & 0x1E;
ABColours[i][1] = (RawBits[i] >> (4 - 1)) & 0x1E;
// replicate bits to truly expand to 5 bits
ABColours[i][0] |= ABColours[i][0] >> 4;
ABColours[i][1] |= ABColours[i][1] >> 4;
// grab the 3(+padding) or 4 bits of blue and add an extra padding bit
ABColours[i][2] = (RawBits[i] & 0xF) << 1;
/*
expand from 3 to 5 bits if this is from colour A, or 4 to 5 bits if from
colour B
*/
if (i == 0)
{
ABColours[0][2] |= ABColours[0][2] >> 3;
}
else
{
ABColours[0][2] |= ABColours[0][2] >> 4;
}
// Set the alpha bits to be 3 + a zero on the end
ABColours[i][3] = (RawBits[i] >> 11) & 0xE;
}
}
2019-11-23 20:27:39 +08:00
}
/*!***********************************************************************
@Function UnpackModulations
@Input pBlock
@Input Do2bitMode
@Input ModulationVals
@Input ModulationModes
@Input StartX
@Input StartY
@Description Given the block and the texture type and it's relative
position in the 2x2 group of blocks, extract the bit
patterns for the fully defined pixels.
*************************************************************************/
2021-12-25 10:04:45 +08:00
static void UnpackModulations(const AMTC_BLOCK_STRUCT* pBlock,
const int Do2bitMode,
int ModulationVals[8][16],
int ModulationModes[8][16],
int StartX,
int StartY)
2019-11-23 20:27:39 +08:00
{
2021-12-25 10:04:45 +08:00
int BlockModMode;
U32 ModulationBits;
int x, y;
BlockModMode = pBlock->PackedData[1] & 1;
ModulationBits = pBlock->PackedData[0];
// if it's in an interpolated mode
if (Do2bitMode && BlockModMode)
{
/*
run through all the pixels in the block. Note we can now treat all the
"stored" values as if they have 2bits (even when they didn't!)
*/
for (y = 0; y < BLK_Y_SIZE; y++)
{
for (x = 0; x < BLK_X_2BPP; x++)
{
ModulationModes[y + StartY][x + StartX] = BlockModMode;
// if this is a stored value...
if (((x ^ y) & 1) == 0)
{
ModulationVals[y + StartY][x + StartX] = ModulationBits & 3;
ModulationBits >>= 2;
}
}
}
}
else if (Do2bitMode) // else if direct encoded 2bit mode - i.e. 1 mode bit per pixel
{
for (y = 0; y < BLK_Y_SIZE; y++)
{
for (x = 0; x < BLK_X_2BPP; x++)
{
ModulationModes[y + StartY][x + StartX] = BlockModMode;
// double the bits so 0=> 00, and 1=>11
if (ModulationBits & 1)
{
ModulationVals[y + StartY][x + StartX] = 0x3;
}
else
{
ModulationVals[y + StartY][x + StartX] = 0x0;
}
ModulationBits >>= 1;
}
}
}
else // else its the 4bpp mode so each value has 2 bits
{
for (y = 0; y < BLK_Y_SIZE; y++)
{
for (x = 0; x < BLK_X_4BPP; x++)
{
ModulationModes[y + StartY][x + StartX] = BlockModMode;
ModulationVals[y + StartY][x + StartX] = ModulationBits & 3;
ModulationBits >>= 2;
}
}
}
// make sure nothing is left over
assert(ModulationBits == 0);
2019-11-23 20:27:39 +08:00
}
/*!***********************************************************************
@Function InterpolateColours
@Input ColourP
@Input ColourQ
@Input ColourR
@Input ColourS
@Input Do2bitMode
@Input x
@Input y
@Modified Result
@Description This performs a HW bit accurate interpolation of either the
A or B colours for a particular pixel.
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
NOTE: It is assumed that the source colours are in ARGB 5554
format - This means that some "preparation" of the values will
be necessary.
*************************************************************************/
static void InterpolateColours(const int ColourP[4],
const int ColourQ[4],
const int ColourR[4],
const int ColourS[4],
const int Do2bitMode,
const int x,
const int y,
int Result[4])
{
2021-12-25 10:04:45 +08:00
int u, v, uscale;
int k;
int tmp1, tmp2;
int P[4], Q[4], R[4], S[4];
// Copy the colours
for (k = 0; k < 4; k++)
{
P[k] = ColourP[k];
Q[k] = ColourQ[k];
R[k] = ColourR[k];
S[k] = ColourS[k];
}
// put the x and y values into the right range
v = (y & 0x3) | ((~y & 0x2) << 1);
if (Do2bitMode)
u = (x & 0x7) | ((~x & 0x4) << 1);
else
u = (x & 0x3) | ((~x & 0x2) << 1);
// get the u and v scale amounts
v = v - BLK_Y_SIZE / 2;
if (Do2bitMode)
{
u = u - BLK_X_2BPP / 2;
uscale = 8;
}
else
{
u = u - BLK_X_4BPP / 2;
uscale = 4;
}
for (k = 0; k < 4; k++)
{
tmp1 = P[k] * uscale + u * (Q[k] - P[k]);
tmp2 = R[k] * uscale + u * (S[k] - R[k]);
tmp1 = tmp1 * 4 + v * (tmp2 - tmp1);
Result[k] = tmp1;
}
// Lop off the appropriate number of bits to get us to 8 bit precision
if (Do2bitMode)
{
// do RGB
for (k = 0; k < 3; k++)
{
Result[k] >>= 2;
}
Result[3] >>= 1;
}
else
{
// do RGB (A is ok)
for (k = 0; k < 3; k++)
{
Result[k] >>= 1;
}
}
// sanity check
for (k = 0; k < 4; k++)
{
assert(Result[k] < 256);
}
/*
Convert from 5554 to 8888
do RGB 5.3 => 8
*/
for (k = 0; k < 3; k++)
{
Result[k] += Result[k] >> 5;
}
Result[3] += Result[3] >> 4;
// 2nd sanity check
for (k = 0; k < 4; k++)
{
assert(Result[k] < 256);
}
2019-11-23 20:27:39 +08:00
}
/*!***********************************************************************
@Function GetModulationValue
@Input x
@Input y
@Input Do2bitMode
@Input ModulationVals
@Input ModulationModes
@Input Mod
@Input DoPT
@Description Get the modulation value as a numerator of a fraction of 8ths
*************************************************************************/
static void GetModulationValue(int x,
2021-12-25 10:04:45 +08:00
int y,
const int Do2bitMode,
const int ModulationVals[8][16],
const int ModulationModes[8][16],
int* Mod,
int* DoPT)
2019-11-23 20:27:39 +08:00
{
2021-12-25 10:04:45 +08:00
static const int RepVals0[4] = {0, 3, 5, 8};
static const int RepVals1[4] = {0, 4, 4, 8};
int ModVal;
// Map X and Y into the local 2x2 block
y = (y & 0x3) | ((~y & 0x2) << 1);
if (Do2bitMode)
x = (x & 0x7) | ((~x & 0x4) << 1);
else
x = (x & 0x3) | ((~x & 0x2) << 1);
// assume no PT for now
*DoPT = 0;
// extract the modulation value. If a simple encoding
if (ModulationModes[y][x] == 0)
{
ModVal = RepVals0[ModulationVals[y][x]];
}
else if (Do2bitMode)
{
// if this is a stored value
if (((x ^ y) & 1) == 0)
ModVal = RepVals0[ModulationVals[y][x]];
else if (ModulationModes[y][x] == 1) // else average from the neighbours if H&V interpolation..
{
ModVal = (RepVals0[ModulationVals[y - 1][x]] + RepVals0[ModulationVals[y + 1][x]] +
RepVals0[ModulationVals[y][x - 1]] + RepVals0[ModulationVals[y][x + 1]] + 2) /
4;
}
else if (ModulationModes[y][x] == 2) // else if H-Only
{
ModVal = (RepVals0[ModulationVals[y][x - 1]] + RepVals0[ModulationVals[y][x + 1]] + 1) / 2;
}
else // else it's V-Only
{
ModVal = (RepVals0[ModulationVals[y - 1][x]] + RepVals0[ModulationVals[y + 1][x]] + 1) / 2;
}
}
else // else it's 4BPP and PT encoding
{
ModVal = RepVals1[ModulationVals[y][x]];
*DoPT = ModulationVals[y][x] == PT_INDEX;
}
*Mod = ModVal;
2019-11-23 20:27:39 +08:00
}
/*!***********************************************************************
@Function TwiddleUV
@Input YSize Y dimension of the texture in pixels
@Input XSize X dimension of the texture in pixels
@Input YPos Pixel Y position
@Input XPos Pixel X position
@Returns The twiddled offset of the pixel
@Description Given the Block (or pixel) coordinates and the dimension of
the texture in blocks (or pixels) this returns the twiddled
offset of the block (or pixel) from the start of the map.
2021-12-25 10:04:45 +08:00
2019-11-23 20:27:39 +08:00
NOTE the dimensions of the texture must be a power of 2
*************************************************************************/
static int DisableTwiddlingRoutine = 0;
static U32 TwiddleUV(U32 YSize, U32 XSize, U32 YPos, U32 XPos)
{
2021-12-25 10:04:45 +08:00
U32 Twiddled;
U32 MinDimension;
U32 MaxValue;
U32 SrcBitPos;
U32 DstBitPos;
int ShiftCount;
assert(YPos < YSize);
assert(XPos < XSize);
assert(POWER_OF_2(YSize));
assert(POWER_OF_2(XSize));
if (YSize < XSize)
{
MinDimension = YSize;
MaxValue = XPos;
}
else
{
MinDimension = XSize;
MaxValue = YPos;
}
// Nasty hack to disable twiddling
if (DisableTwiddlingRoutine)
return (YPos * XSize + XPos);
// Step through all the bits in the "minimum" dimension
SrcBitPos = 1;
DstBitPos = 1;
Twiddled = 0;
ShiftCount = 0;
while (SrcBitPos < MinDimension)
{
if (YPos & SrcBitPos)
{
Twiddled |= DstBitPos;
}
if (XPos & SrcBitPos)
{
Twiddled |= (DstBitPos << 1);
}
SrcBitPos <<= 1;
DstBitPos <<= 2;
ShiftCount += 1;
}
// prepend any unused bits
MaxValue >>= ShiftCount;
Twiddled |= (MaxValue << (2 * ShiftCount));
return Twiddled;
2019-11-23 20:27:39 +08:00
}
/*!***********************************************************************
@Function Decompress
@Input pCompressedData The PVRTC texture data to decompress
@Input Do2BitMode Signifies whether the data is PVRTC2 or PVRTC4
@Input XDim X dimension of the texture
@Input YDim Y dimension of the texture
@Input AssumeImageTiles Assume the texture data tiles
@Modified pResultImage The decompressed texture data
@Description Decompresses PVRTC to RGBA 8888
*************************************************************************/
2021-12-25 10:04:45 +08:00
static void PVRDecompress(AMTC_BLOCK_STRUCT* pCompressedData,
const bool Do2bitMode,
const int XDim,
const int YDim,
const int AssumeImageTiles,
unsigned char* pResultImage)
2019-11-23 20:27:39 +08:00
{
2021-12-25 10:04:45 +08:00
int x, y;
int i, j;
int BlkX, BlkY;
int BlkXp1, BlkYp1;
int XBlockSize;
int BlkXDim, BlkYDim;
int StartX, StartY;
int ModulationVals[8][16];
int ModulationModes[8][16];
int Mod, DoPT;
unsigned int uPosition;
// local neighbourhood of blocks
AMTC_BLOCK_STRUCT* pBlocks[2][2];
AMTC_BLOCK_STRUCT* pPrevious[2][2] = {{NULL, NULL}, {NULL, NULL}};
// Low precision colours extracted from the blocks
struct
{
int Reps[2][4];
} Colours5554[2][2];
// Interpolated A and B colours for the pixel
int ASig[4], BSig[4];
int Result[4];
if (Do2bitMode)
XBlockSize = BLK_X_2BPP;
else
XBlockSize = BLK_X_4BPP;
// For MBX don't allow the sizes to get too small
BlkXDim = PVRT_MAX(2, XDim / XBlockSize);
BlkYDim = PVRT_MAX(2, YDim / BLK_Y_SIZE);
/*
Step through the pixels of the image decompressing each one in turn
Note that this is a hideously inefficient way to do this!
*/
for (y = 0; y < YDim; y++)
{
for (x = 0; x < XDim; x++)
{
// map this pixel to the top left neighbourhood of blocks
BlkX = (x - XBlockSize / 2);
BlkY = (y - BLK_Y_SIZE / 2);
BlkX = LIMIT_COORD(BlkX, XDim, AssumeImageTiles);
BlkY = LIMIT_COORD(BlkY, YDim, AssumeImageTiles);
BlkX /= XBlockSize;
BlkY /= BLK_Y_SIZE;
// compute the positions of the other 3 blocks
BlkXp1 = LIMIT_COORD(BlkX + 1, BlkXDim, AssumeImageTiles);
BlkYp1 = LIMIT_COORD(BlkY + 1, BlkYDim, AssumeImageTiles);
// Map to block memory locations
pBlocks[0][0] = pCompressedData + TwiddleUV(BlkYDim, BlkXDim, BlkY, BlkX);
pBlocks[0][1] = pCompressedData + TwiddleUV(BlkYDim, BlkXDim, BlkY, BlkXp1);
pBlocks[1][0] = pCompressedData + TwiddleUV(BlkYDim, BlkXDim, BlkYp1, BlkX);
pBlocks[1][1] = pCompressedData + TwiddleUV(BlkYDim, BlkXDim, BlkYp1, BlkXp1);
/*
extract the colours and the modulation information IF the previous values
have changed.
*/
if (memcmp(pPrevious, pBlocks, 4 * sizeof(void*)) != 0)
{
StartY = 0;
for (i = 0; i < 2; i++)
{
StartX = 0;
for (j = 0; j < 2; j++)
{
Unpack5554Colour(pBlocks[i][j], Colours5554[i][j].Reps);
UnpackModulations(pBlocks[i][j], Do2bitMode, ModulationVals, ModulationModes, StartX, StartY);
StartX += XBlockSize;
}
StartY += BLK_Y_SIZE;
}
// make a copy of the new pointers
memcpy(pPrevious, pBlocks, 4 * sizeof(void*));
}
// decompress the pixel. First compute the interpolated A and B signals
InterpolateColours(Colours5554[0][0].Reps[0], Colours5554[0][1].Reps[0], Colours5554[1][0].Reps[0],
Colours5554[1][1].Reps[0], Do2bitMode, x, y, ASig);
InterpolateColours(Colours5554[0][0].Reps[1], Colours5554[0][1].Reps[1], Colours5554[1][0].Reps[1],
Colours5554[1][1].Reps[1], Do2bitMode, x, y, BSig);
GetModulationValue(x, y, Do2bitMode, (const int(*)[16])ModulationVals, (const int(*)[16])ModulationModes,
&Mod, &DoPT);
// compute the modulated colour
for (i = 0; i < 4; i++)
{
Result[i] = ASig[i] * 8 + Mod * (BSig[i] - ASig[i]);
Result[i] >>= 3;
}
if (DoPT)
Result[3] = 0;
// Store the result in the output image
uPosition = (x + y * XDim) << 2;
pResultImage[uPosition + 0] = (U8)Result[0];
pResultImage[uPosition + 1] = (U8)Result[1];
pResultImage[uPosition + 2] = (U8)Result[2];
pResultImage[uPosition + 3] = (U8)Result[3];
}
}
2019-11-23 20:27:39 +08:00
}
/*****************************************************************************
End of file (pvr.cpp)
*****************************************************************************/