axmol/thirdparty/openal/alc/bformatdec.cpp

299 lines
11 KiB
C++
Raw Normal View History

#include "config.h"
#include "bformatdec.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <iterator>
#include <numeric>
#include "almalloc.h"
#include "alu.h"
#include "core/ambdec.h"
#include "core/filters/splitter.h"
#include "front_stablizer.h"
#include "math_defs.h"
#include "opthelpers.h"
namespace {
constexpr std::array<float,MaxAmbiOrder+1> Ambi3DDecoderHFScale{{
1.00000000e+00f, 1.00000000e+00f
}};
constexpr std::array<float,MaxAmbiOrder+1> Ambi3DDecoderHFScale2O{{
7.45355990e-01f, 1.00000000e+00f, 1.00000000e+00f
}};
constexpr std::array<float,MaxAmbiOrder+1> Ambi3DDecoderHFScale3O{{
5.89792205e-01f, 8.79693856e-01f, 1.00000000e+00f, 1.00000000e+00f
}};
inline auto& GetDecoderHFScales(uint order) noexcept
{
if(order >= 3) return Ambi3DDecoderHFScale3O;
if(order == 2) return Ambi3DDecoderHFScale2O;
return Ambi3DDecoderHFScale;
}
inline auto& GetAmbiScales(AmbDecScale scaletype) noexcept
{
if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa();
if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D();
return AmbiScale::FromN3D();
}
} // namespace
BFormatDec::BFormatDec(const AmbDecConf *conf, const bool allow_2band, const size_t inchans,
const uint srate, const uint (&chanmap)[MAX_OUTPUT_CHANNELS],
std::unique_ptr<FrontStablizer> stablizer)
: mStablizer{std::move(stablizer)}, mDualBand{allow_2band && (conf->FreqBands == 2)}
, mChannelDec{inchans}
{
const bool periphonic{(conf->ChanMask&AmbiPeriphonicMask) != 0};
auto&& coeff_scale = GetAmbiScales(conf->CoeffScale);
if(!mDualBand)
{
for(size_t j{0},k{0};j < mChannelDec.size();++j)
{
const size_t acn{periphonic ? j : AmbiIndex::FromACN2D()[j]};
if(!(conf->ChanMask&(1u<<acn))) continue;
const size_t order{AmbiIndex::OrderFromChannel()[acn]};
const float gain{conf->HFOrderGain[order] / coeff_scale[acn]};
for(size_t i{0u};i < conf->NumSpeakers;++i)
{
const size_t chanidx{chanmap[i]};
mChannelDec[j].mGains.Single[chanidx] = conf->Matrix[i][k] * gain;
}
++k;
}
}
else
{
mChannelDec[0].mXOver.init(conf->XOverFreq / static_cast<float>(srate));
for(size_t j{1};j < mChannelDec.size();++j)
mChannelDec[j].mXOver = mChannelDec[0].mXOver;
const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)};
for(size_t j{0},k{0};j < mChannelDec.size();++j)
{
const size_t acn{periphonic ? j : AmbiIndex::FromACN2D()[j]};
if(!(conf->ChanMask&(1u<<acn))) continue;
const size_t order{AmbiIndex::OrderFromChannel()[acn]};
const float hfGain{conf->HFOrderGain[order] * ratio / coeff_scale[acn]};
const float lfGain{conf->LFOrderGain[order] / ratio / coeff_scale[acn]};
for(size_t i{0u};i < conf->NumSpeakers;++i)
{
const size_t chanidx{chanmap[i]};
mChannelDec[j].mGains.Dual[sHFBand][chanidx] = conf->HFMatrix[i][k] * hfGain;
mChannelDec[j].mGains.Dual[sLFBand][chanidx] = conf->LFMatrix[i][k] * lfGain;
}
++k;
}
}
}
BFormatDec::BFormatDec(const size_t inchans, const al::span<const ChannelDec> coeffs,
const al::span<const ChannelDec> coeffslf, std::unique_ptr<FrontStablizer> stablizer)
: mStablizer{std::move(stablizer)}, mDualBand{!coeffslf.empty()}, mChannelDec{inchans}
{
if(!mDualBand)
{
for(size_t j{0};j < mChannelDec.size();++j)
{
float *outcoeffs{mChannelDec[j].mGains.Single};
for(const ChannelDec &incoeffs : coeffs)
*(outcoeffs++) = incoeffs[j];
}
}
else
{
for(size_t j{0};j < mChannelDec.size();++j)
{
float *outcoeffs{mChannelDec[j].mGains.Dual[sHFBand]};
for(const ChannelDec &incoeffs : coeffs)
*(outcoeffs++) = incoeffs[j];
outcoeffs = mChannelDec[j].mGains.Dual[sLFBand];
for(const ChannelDec &incoeffs : coeffslf)
*(outcoeffs++) = incoeffs[j];
}
}
}
void BFormatDec::process(const al::span<FloatBufferLine> OutBuffer,
const FloatBufferLine *InSamples, const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
if(mDualBand)
{
const al::span<float> hfSamples{mSamples[sHFBand].data(), SamplesToDo};
const al::span<float> lfSamples{mSamples[sLFBand].data(), SamplesToDo};
for(auto &chandec : mChannelDec)
{
chandec.mXOver.process({InSamples->data(), SamplesToDo}, hfSamples.data(),
lfSamples.data());
MixSamples(hfSamples, OutBuffer, chandec.mGains.Dual[sHFBand],
chandec.mGains.Dual[sHFBand], 0, 0);
MixSamples(lfSamples, OutBuffer, chandec.mGains.Dual[sLFBand],
chandec.mGains.Dual[sLFBand], 0, 0);
++InSamples;
}
}
else
{
for(auto &chandec : mChannelDec)
{
MixSamples({InSamples->data(), SamplesToDo}, OutBuffer, chandec.mGains.Single,
chandec.mGains.Single, 0, 0);
++InSamples;
}
}
}
void BFormatDec::processStablize(const al::span<FloatBufferLine> OutBuffer,
const FloatBufferLine *InSamples, const size_t lidx, const size_t ridx, const size_t cidx,
const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
/* Move the existing direct L/R signal out so it doesn't get processed by
* the stablizer. Add a delay to it so it stays aligned with the stablizer
* delay.
*/
float *RESTRICT mid{al::assume_aligned<16>(mStablizer->MidDirect.data())};
float *RESTRICT side{al::assume_aligned<16>(mStablizer->Side.data())};
for(size_t i{0};i < SamplesToDo;++i)
{
mid[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] + OutBuffer[ridx][i];
side[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] - OutBuffer[ridx][i];
}
std::fill_n(OutBuffer[lidx].begin(), SamplesToDo, 0.0f);
std::fill_n(OutBuffer[ridx].begin(), SamplesToDo, 0.0f);
/* Decode the B-Format input to OutBuffer. */
process(OutBuffer, InSamples, SamplesToDo);
/* Apply a delay to all channels, except the front-left and front-right, so
* they maintain correct timing.
*/
const size_t NumChannels{OutBuffer.size()};
for(size_t i{0u};i < NumChannels;i++)
{
if(i == lidx || i == ridx)
continue;
auto &DelayBuf = mStablizer->DelayBuf[i];
auto buffer_end = OutBuffer[i].begin() + SamplesToDo;
if LIKELY(SamplesToDo >= FrontStablizer::DelayLength)
{
auto delay_end = std::rotate(OutBuffer[i].begin(),
buffer_end - FrontStablizer::DelayLength, buffer_end);
std::swap_ranges(OutBuffer[i].begin(), delay_end, DelayBuf.begin());
}
else
{
auto delay_start = std::swap_ranges(OutBuffer[i].begin(), buffer_end,
DelayBuf.begin());
std::rotate(DelayBuf.begin(), delay_start, DelayBuf.end());
}
}
/* Include the side signal for what was just decoded. */
for(size_t i{0};i < SamplesToDo;++i)
side[FrontStablizer::DelayLength+i] += OutBuffer[lidx][i] - OutBuffer[ridx][i];
/* Combine the delayed mid signal with the decoded mid signal. Note that
* the samples are stored and combined in reverse, so the newest samples
* are at the front and the oldest at the back.
*/
al::span<float> tmpbuf{mStablizer->TempBuf.data(), SamplesToDo+FrontStablizer::DelayLength};
auto tmpiter = tmpbuf.begin() + SamplesToDo;
std::copy(mStablizer->MidDelay.cbegin(), mStablizer->MidDelay.cend(), tmpiter);
for(size_t i{0};i < SamplesToDo;++i)
*--tmpiter = OutBuffer[lidx][i] + OutBuffer[ridx][i];
/* Save the newest samples for next time. */
std::copy_n(tmpbuf.cbegin(), mStablizer->MidDelay.size(), mStablizer->MidDelay.begin());
/* Apply an all-pass on the reversed signal, then reverse the samples to
* get the forward signal with a reversed phase shift. The future samples
* are included with the all-pass to reduce the error in the output
* samples (the smaller the delay, the more error is introduced).
*/
mStablizer->MidFilter.applyAllpass(tmpbuf);
tmpbuf = tmpbuf.subspan<FrontStablizer::DelayLength>();
std::reverse(tmpbuf.begin(), tmpbuf.end());
/* Now apply the band-splitter, combining its phase shift with the reversed
* phase shift, restoring the original phase on the split signal.
*/
mStablizer->MidFilter.process(tmpbuf, mStablizer->MidHF.data(), mStablizer->MidLF.data());
/* This pans the separate low- and high-frequency signals between being on
* the center channel and the left+right channels. The low-frequency signal
* is panned 1/3rd toward center and the high-frequency signal is panned
* 1/4th toward center. These values can be tweaked.
*/
const float cos_lf{std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f))};
const float cos_hf{std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
const float sin_lf{std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f))};
const float sin_hf{std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
for(size_t i{0};i < SamplesToDo;i++)
{
const float m{mStablizer->MidLF[i]*cos_lf + mStablizer->MidHF[i]*cos_hf + mid[i]};
const float c{mStablizer->MidLF[i]*sin_lf + mStablizer->MidHF[i]*sin_hf};
const float s{side[i]};
/* The generated center channel signal adds to the existing signal,
* while the modified left and right channels replace.
*/
OutBuffer[lidx][i] = (m + s) * 0.5f;
OutBuffer[ridx][i] = (m - s) * 0.5f;
OutBuffer[cidx][i] += c * 0.5f;
}
/* Move the delayed mid/side samples to the front for next time. */
auto mid_end = mStablizer->MidDirect.cbegin() + SamplesToDo;
std::copy(mid_end, mid_end+FrontStablizer::DelayLength, mStablizer->MidDirect.begin());
auto side_end = mStablizer->Side.cbegin() + SamplesToDo;
std::copy(side_end, side_end+FrontStablizer::DelayLength, mStablizer->Side.begin());
}
auto BFormatDec::GetHFOrderScales(const uint in_order, const uint out_order) noexcept
-> std::array<float,MaxAmbiOrder+1>
{
std::array<float,MaxAmbiOrder+1> ret{};
assert(out_order >= in_order);
const auto &target = GetDecoderHFScales(out_order);
const auto &input = GetDecoderHFScales(in_order);
for(size_t i{0};i < in_order+1;++i)
ret[i] = input[i] / target[i];
return ret;
}
std::unique_ptr<BFormatDec> BFormatDec::Create(const AmbDecConf *conf, const bool allow_2band,
const size_t inchans, const uint srate, const uint (&chanmap)[MAX_OUTPUT_CHANNELS],
std::unique_ptr<FrontStablizer> stablizer)
{
return std::unique_ptr<BFormatDec>{new(FamCount(inchans))
BFormatDec{conf, allow_2band, inchans, srate, chanmap, std::move(stablizer)}};
}
std::unique_ptr<BFormatDec> BFormatDec::Create(const size_t inchans,
const al::span<const ChannelDec> coeffs, const al::span<const ChannelDec> coeffslf,
std::unique_ptr<FrontStablizer> stablizer)
{
return std::unique_ptr<BFormatDec>{new(FamCount(inchans))
BFormatDec{inchans, coeffs, coeffslf, std::move(stablizer)}};
}