2020-11-16 14:47:43 +08:00
|
|
|
/*
|
|
|
|
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
|
|
|
|
* https://github.com/jhasse/poly2tri
|
|
|
|
*
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
* are permitted provided that the following conditions are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
|
|
|
* used to endorse or promote products derived from this software without specific
|
|
|
|
* prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
#include "shapes.h"
|
|
|
|
|
|
|
|
#include <cassert>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
namespace p2t {
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& out, const Point& point) {
|
|
|
|
return out << point.x << "," << point.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
Triangle::Triangle(Point& a, Point& b, Point& c)
|
|
|
|
{
|
|
|
|
points_[0] = &a; points_[1] = &b; points_[2] = &c;
|
|
|
|
neighbors_[0] = nullptr; neighbors_[1] = nullptr; neighbors_[2] = nullptr;
|
|
|
|
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
|
|
|
|
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
|
|
|
|
interior_ = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update neighbor pointers
|
|
|
|
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
|
|
|
|
{
|
|
|
|
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
|
|
|
|
neighbors_[0] = t;
|
|
|
|
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
|
|
|
|
neighbors_[1] = t;
|
|
|
|
else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
|
|
|
|
neighbors_[2] = t;
|
|
|
|
else
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Exhaustive search to update neighbor pointers
|
|
|
|
void Triangle::MarkNeighbor(Triangle& t)
|
|
|
|
{
|
|
|
|
if (t.Contains(points_[1], points_[2])) {
|
|
|
|
neighbors_[0] = &t;
|
|
|
|
t.MarkNeighbor(points_[1], points_[2], this);
|
|
|
|
} else if (t.Contains(points_[0], points_[2])) {
|
|
|
|
neighbors_[1] = &t;
|
|
|
|
t.MarkNeighbor(points_[0], points_[2], this);
|
|
|
|
} else if (t.Contains(points_[0], points_[1])) {
|
|
|
|
neighbors_[2] = &t;
|
|
|
|
t.MarkNeighbor(points_[0], points_[1], this);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Clears all references to all other triangles and points
|
|
|
|
*/
|
|
|
|
void Triangle::Clear()
|
|
|
|
{
|
|
|
|
Triangle *t;
|
|
|
|
for( int i=0; i<3; i++ )
|
|
|
|
{
|
|
|
|
t = neighbors_[i];
|
|
|
|
if( t != nullptr )
|
|
|
|
{
|
|
|
|
t->ClearNeighbor( this );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ClearNeighbors();
|
|
|
|
points_[0]=points_[1]=points_[2] = nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::ClearNeighbor(const Triangle *triangle )
|
|
|
|
{
|
|
|
|
if( neighbors_[0] == triangle )
|
|
|
|
{
|
|
|
|
neighbors_[0] = nullptr;
|
|
|
|
}
|
|
|
|
else if( neighbors_[1] == triangle )
|
|
|
|
{
|
|
|
|
neighbors_[1] = nullptr;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
neighbors_[2] = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::ClearNeighbors()
|
|
|
|
{
|
|
|
|
neighbors_[0] = nullptr;
|
|
|
|
neighbors_[1] = nullptr;
|
|
|
|
neighbors_[2] = nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::ClearDelunayEdges()
|
|
|
|
{
|
|
|
|
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
Point* Triangle::OppositePoint(Triangle& t, const Point& p)
|
|
|
|
{
|
|
|
|
Point *cw = t.PointCW(p);
|
|
|
|
return PointCW(*cw);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Legalized triangle by rotating clockwise around point(0)
|
|
|
|
void Triangle::Legalize(Point& point)
|
|
|
|
{
|
|
|
|
points_[1] = points_[0];
|
|
|
|
points_[0] = points_[2];
|
|
|
|
points_[2] = &point;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Legalize triagnle by rotating clockwise around oPoint
|
|
|
|
void Triangle::Legalize(Point& opoint, Point& npoint)
|
|
|
|
{
|
|
|
|
if (&opoint == points_[0]) {
|
|
|
|
points_[1] = points_[0];
|
|
|
|
points_[0] = points_[2];
|
|
|
|
points_[2] = &npoint;
|
|
|
|
} else if (&opoint == points_[1]) {
|
|
|
|
points_[2] = points_[1];
|
|
|
|
points_[1] = points_[0];
|
|
|
|
points_[0] = &npoint;
|
|
|
|
} else if (&opoint == points_[2]) {
|
|
|
|
points_[0] = points_[2];
|
|
|
|
points_[2] = points_[1];
|
|
|
|
points_[1] = &npoint;
|
|
|
|
} else {
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int Triangle::Index(const Point* p)
|
|
|
|
{
|
|
|
|
if (p == points_[0]) {
|
|
|
|
return 0;
|
|
|
|
} else if (p == points_[1]) {
|
|
|
|
return 1;
|
|
|
|
} else if (p == points_[2]) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
assert(0);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
|
|
|
|
{
|
|
|
|
if (points_[0] == p1) {
|
|
|
|
if (points_[1] == p2) {
|
|
|
|
return 2;
|
|
|
|
} else if (points_[2] == p2) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else if (points_[1] == p1) {
|
|
|
|
if (points_[2] == p2) {
|
|
|
|
return 0;
|
|
|
|
} else if (points_[0] == p2) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
} else if (points_[2] == p1) {
|
|
|
|
if (points_[0] == p2) {
|
|
|
|
return 1;
|
|
|
|
} else if (points_[1] == p2) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::MarkConstrainedEdge(int index)
|
|
|
|
{
|
|
|
|
constrained_edge[index] = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::MarkConstrainedEdge(Edge& edge)
|
|
|
|
{
|
|
|
|
MarkConstrainedEdge(edge.p, edge.q);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mark edge as constrained
|
|
|
|
void Triangle::MarkConstrainedEdge(Point* p, Point* q)
|
|
|
|
{
|
|
|
|
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
|
|
|
|
constrained_edge[2] = true;
|
|
|
|
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
|
|
|
|
constrained_edge[1] = true;
|
|
|
|
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
|
|
|
|
constrained_edge[0] = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The point counter-clockwise to given point
|
|
|
|
Point* Triangle::PointCW(const Point& point)
|
|
|
|
{
|
|
|
|
if (&point == points_[0]) {
|
|
|
|
return points_[2];
|
|
|
|
} else if (&point == points_[1]) {
|
|
|
|
return points_[0];
|
|
|
|
} else if (&point == points_[2]) {
|
|
|
|
return points_[1];
|
|
|
|
}
|
|
|
|
assert(0);
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The point counter-clockwise to given point
|
|
|
|
Point* Triangle::PointCCW(const Point& point)
|
|
|
|
{
|
|
|
|
if (&point == points_[0]) {
|
|
|
|
return points_[1];
|
|
|
|
} else if (&point == points_[1]) {
|
|
|
|
return points_[2];
|
|
|
|
} else if (&point == points_[2]) {
|
|
|
|
return points_[0];
|
|
|
|
}
|
|
|
|
assert(0);
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2021-06-01 11:47:19 +08:00
|
|
|
// The neighbor across to given point
|
|
|
|
Triangle* Triangle::NeighborAcross(const Point& point)
|
|
|
|
{
|
|
|
|
if (&point == points_[0]) {
|
|
|
|
return neighbors_[0];
|
|
|
|
} else if (&point == points_[1]) {
|
|
|
|
return neighbors_[1];
|
|
|
|
}
|
|
|
|
return neighbors_[2];
|
|
|
|
}
|
|
|
|
|
2020-11-16 14:47:43 +08:00
|
|
|
// The neighbor clockwise to given point
|
|
|
|
Triangle* Triangle::NeighborCW(const Point& point)
|
|
|
|
{
|
|
|
|
if (&point == points_[0]) {
|
|
|
|
return neighbors_[1];
|
|
|
|
} else if (&point == points_[1]) {
|
|
|
|
return neighbors_[2];
|
|
|
|
}
|
|
|
|
return neighbors_[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
// The neighbor counter-clockwise to given point
|
|
|
|
Triangle* Triangle::NeighborCCW(const Point& point)
|
|
|
|
{
|
|
|
|
if (&point == points_[0]) {
|
|
|
|
return neighbors_[2];
|
|
|
|
} else if (&point == points_[1]) {
|
|
|
|
return neighbors_[0];
|
|
|
|
}
|
|
|
|
return neighbors_[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Triangle::GetConstrainedEdgeCCW(const Point& p)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
return constrained_edge[2];
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
return constrained_edge[0];
|
|
|
|
}
|
|
|
|
return constrained_edge[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Triangle::GetConstrainedEdgeCW(const Point& p)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
return constrained_edge[1];
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
return constrained_edge[2];
|
|
|
|
}
|
|
|
|
return constrained_edge[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::SetConstrainedEdgeCCW(const Point& p, bool ce)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
constrained_edge[2] = ce;
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
constrained_edge[0] = ce;
|
|
|
|
} else {
|
|
|
|
constrained_edge[1] = ce;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::SetConstrainedEdgeCW(const Point& p, bool ce)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
constrained_edge[1] = ce;
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
constrained_edge[2] = ce;
|
|
|
|
} else {
|
|
|
|
constrained_edge[0] = ce;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Triangle::GetDelunayEdgeCCW(const Point& p)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
return delaunay_edge[2];
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
return delaunay_edge[0];
|
|
|
|
}
|
|
|
|
return delaunay_edge[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Triangle::GetDelunayEdgeCW(const Point& p)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
return delaunay_edge[1];
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
return delaunay_edge[2];
|
|
|
|
}
|
|
|
|
return delaunay_edge[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::SetDelunayEdgeCCW(const Point& p, bool e)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
delaunay_edge[2] = e;
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
delaunay_edge[0] = e;
|
|
|
|
} else {
|
|
|
|
delaunay_edge[1] = e;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::SetDelunayEdgeCW(const Point& p, bool e)
|
|
|
|
{
|
|
|
|
if (&p == points_[0]) {
|
|
|
|
delaunay_edge[1] = e;
|
|
|
|
} else if (&p == points_[1]) {
|
|
|
|
delaunay_edge[2] = e;
|
|
|
|
} else {
|
|
|
|
delaunay_edge[0] = e;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Triangle::DebugPrint()
|
|
|
|
{
|
|
|
|
std::cout << *points_[0] << " " << *points_[1] << " " << *points_[2] << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Triangle::CircumcicleContains(const Point& point) const
|
|
|
|
{
|
|
|
|
assert(IsCounterClockwise());
|
|
|
|
const double dx = points_[0]->x - point.x;
|
|
|
|
const double dy = points_[0]->y - point.y;
|
|
|
|
const double ex = points_[1]->x - point.x;
|
|
|
|
const double ey = points_[1]->y - point.y;
|
|
|
|
const double fx = points_[2]->x - point.x;
|
|
|
|
const double fy = points_[2]->y - point.y;
|
|
|
|
|
|
|
|
const double ap = dx * dx + dy * dy;
|
|
|
|
const double bp = ex * ex + ey * ey;
|
|
|
|
const double cp = fx * fx + fy * fy;
|
|
|
|
|
|
|
|
return (dx * (fy * bp - cp * ey) - dy * (fx * bp - cp * ex) + ap * (fx * ey - fy * ex)) < 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Triangle::IsCounterClockwise() const
|
|
|
|
{
|
|
|
|
return (points_[1]->x - points_[0]->x) * (points_[2]->y - points_[0]->y) -
|
|
|
|
(points_[2]->x - points_[0]->x) * (points_[1]->y - points_[0]->y) >
|
|
|
|
0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsDelaunay(const std::vector<p2t::Triangle*>& triangles)
|
|
|
|
{
|
|
|
|
for (const auto triangle : triangles) {
|
|
|
|
for (const auto other : triangles) {
|
|
|
|
if (triangle == other) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
|
|
if (triangle->CircumcicleContains(*other->GetPoint(i))) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|