2012-03-12 15:22:03 +08:00
|
|
|
|
/*
|
|
|
|
|
Copyright (c) 2008, Luke Benstead.
|
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
|
are permitted provided that the following conditions are met:
|
|
|
|
|
|
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
|
|
|
this list of conditions and the following disclaimer.
|
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
|
this list of conditions and the following disclaimer in the documentation
|
|
|
|
|
and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
|
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
|
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
|
|
|
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
|
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
|
|
#include "kazmath/vec3.h"
|
|
|
|
|
#include "kazmath/vec4.h"
|
|
|
|
|
#include "kazmath/plane.h"
|
|
|
|
|
|
|
|
|
|
const kmScalar kmPlaneDot(const kmPlane* pP, const kmVec4* pV)
|
|
|
|
|
{
|
|
|
|
|
//a*x + b*y + c*z + d*w
|
|
|
|
|
|
|
|
|
|
return (pP->a * pV->x +
|
2012-04-19 14:35:52 +08:00
|
|
|
|
pP->b * pV->y +
|
|
|
|
|
pP->c * pV->z +
|
|
|
|
|
pP->d * pV->w);
|
2012-03-12 15:22:03 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const kmScalar kmPlaneDotCoord(const kmPlane* pP, const kmVec3* pV)
|
|
|
|
|
{
|
|
|
|
|
return (pP->a * pV->x +
|
2012-04-19 14:35:52 +08:00
|
|
|
|
pP->b * pV->y +
|
|
|
|
|
pP->c * pV->z + pP->d);
|
2012-03-12 15:22:03 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const kmScalar kmPlaneDotNormal(const kmPlane* pP, const kmVec3* pV)
|
|
|
|
|
{
|
|
|
|
|
return (pP->a * pV->x +
|
2012-04-19 14:35:52 +08:00
|
|
|
|
pP->b * pV->y +
|
|
|
|
|
pP->c * pV->z);
|
2012-03-12 15:22:03 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
kmPlane* const kmPlaneFromPointNormal(kmPlane* pOut, const kmVec3* pPoint, const kmVec3* pNormal)
|
|
|
|
|
{
|
|
|
|
|
/*
|
2012-04-19 14:35:52 +08:00
|
|
|
|
Planea = Nx
|
|
|
|
|
Planeb = Ny
|
|
|
|
|
Planec = Nz
|
|
|
|
|
Planed = −N⋅P
|
2012-03-12 15:22:03 +08:00
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pOut->a = pNormal->x;
|
|
|
|
|
pOut->b = pNormal->y;
|
|
|
|
|
pOut->c = pNormal->z;
|
|
|
|
|
pOut->d = -kmVec3Dot(pNormal, pPoint);
|
|
|
|
|
|
|
|
|
|
return pOut;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Creates a plane from 3 points. The result is stored in pOut.
|
|
|
|
|
* pOut is returned.
|
|
|
|
|
*/
|
|
|
|
|
kmPlane* const kmPlaneFromPoints(kmPlane* pOut, const kmVec3* p1, const kmVec3* p2, const kmVec3* p3)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
v = (B − A) × (C − A)
|
|
|
|
|
n = 1⁄|v| v
|
|
|
|
|
Outa = nx
|
|
|
|
|
Outb = ny
|
|
|
|
|
Outc = nz
|
|
|
|
|
Outd = −n⋅A
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
kmVec3 n, v1, v2;
|
|
|
|
|
kmVec3Subtract(&v1, p2, p1); //Create the vectors for the 2 sides of the triangle
|
|
|
|
|
kmVec3Subtract(&v2, p3, p1);
|
|
|
|
|
kmVec3Cross(&n, &v1, &v2); //Use the cross product to get the normal
|
|
|
|
|
|
|
|
|
|
kmVec3Normalize(&n, &n); //Normalize it and assign to pOut->m_N
|
|
|
|
|
|
|
|
|
|
pOut->a = n.x;
|
|
|
|
|
pOut->b = n.y;
|
|
|
|
|
pOut->c = n.z;
|
|
|
|
|
pOut->d = kmVec3Dot(kmVec3Scale(&n, &n, -1.0), p1);
|
|
|
|
|
|
|
|
|
|
return pOut;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
kmVec3* const kmPlaneIntersectLine(kmVec3* pOut, const kmPlane* pP, const kmVec3* pV1, const kmVec3* pV2)
|
|
|
|
|
{
|
|
|
|
|
/*
|
2012-04-19 14:35:52 +08:00
|
|
|
|
n = (Planea, Planeb, Planec)
|
|
|
|
|
d = V − U
|
|
|
|
|
Out = U − d⋅(Pd + n⋅U)⁄(d⋅n) [iff d⋅n ≠ 0]
|
2012-03-12 15:22:03 +08:00
|
|
|
|
*/
|
|
|
|
|
kmVec3 d;
|
|
|
|
|
assert(0 && "Not implemented");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kmVec3Subtract(&d, pV2, pV1); //Get the direction vector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//TODO: Continue here!
|
|
|
|
|
/*if (fabs(kmVec3Dot(&pP->m_N, &d)) > kmEpsilon)
|
|
|
|
|
{
|
2012-04-19 14:35:52 +08:00
|
|
|
|
//If we get here then the plane and line are parallel (i.e. no intersection)
|
|
|
|
|
pOut = nullptr; //Set to nullptr
|
2012-03-12 15:22:03 +08:00
|
|
|
|
|
2012-04-19 14:35:52 +08:00
|
|
|
|
return pOut;
|
2012-03-12 15:22:03 +08:00
|
|
|
|
} */
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
kmPlane* const kmPlaneNormalize(kmPlane* pOut, const kmPlane* pP)
|
|
|
|
|
{
|
2012-04-19 14:35:52 +08:00
|
|
|
|
kmVec3 n;
|
2012-03-12 15:22:03 +08:00
|
|
|
|
kmScalar l = 0;
|
|
|
|
|
|
2012-04-19 14:35:52 +08:00
|
|
|
|
n.x = pP->a;
|
|
|
|
|
n.y = pP->b;
|
|
|
|
|
n.z = pP->c;
|
2012-03-12 15:22:03 +08:00
|
|
|
|
|
2012-04-19 14:35:52 +08:00
|
|
|
|
l = 1.0f / kmVec3Length(&n); //Get 1/length
|
|
|
|
|
kmVec3Normalize(&n, &n); //Normalize the vector and assign to pOut
|
2012-03-12 15:22:03 +08:00
|
|
|
|
|
2012-04-19 14:35:52 +08:00
|
|
|
|
pOut->a = n.x;
|
|
|
|
|
pOut->b = n.y;
|
|
|
|
|
pOut->c = n.z;
|
2012-03-12 15:22:03 +08:00
|
|
|
|
|
2012-04-19 14:35:52 +08:00
|
|
|
|
pOut->d = pP->d * l; //Scale the D value and assign to pOut
|
2012-03-12 15:22:03 +08:00
|
|
|
|
|
2012-04-19 14:35:52 +08:00
|
|
|
|
return pOut;
|
2012-03-12 15:22:03 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
kmPlane* const kmPlaneScale(kmPlane* pOut, const kmPlane* pP, kmScalar s)
|
|
|
|
|
{
|
2012-04-19 14:35:52 +08:00
|
|
|
|
assert(0 && "Not implemented");
|
2012-03-12 15:22:03 +08:00
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Returns POINT_INFRONT_OF_PLANE if pP is infront of pIn. Returns
|
|
|
|
|
* POINT_BEHIND_PLANE if it is behind. Returns POINT_ON_PLANE otherwise
|
|
|
|
|
*/
|
|
|
|
|
const POINT_CLASSIFICATION kmPlaneClassifyPoint(const kmPlane* pIn, const kmVec3* pP)
|
|
|
|
|
{
|
|
|
|
|
// This function will determine if a point is on, in front of, or behind
|
|
|
|
|
// the plane. First we store the dot product of the plane and the point.
|
|
|
|
|
float distance = pIn->a * pP->x + pIn->b * pP->y + pIn->c * pP->z + pIn->d;
|
|
|
|
|
|
|
|
|
|
// Simply put if the dot product is greater than 0 then it is infront of it.
|
|
|
|
|
// If it is less than 0 then it is behind it. And if it is 0 then it is on it.
|
|
|
|
|
if(distance > 0.001) return POINT_INFRONT_OF_PLANE;
|
|
|
|
|
if(distance < -0.001) return POINT_BEHIND_PLANE;
|
|
|
|
|
|
|
|
|
|
return POINT_ON_PLANE;
|
|
|
|
|
}
|
|
|
|
|
|