mirror of https://github.com/axmolengine/axmol.git
1167 lines
32 KiB
C++
1167 lines
32 KiB
C++
|
/**
|
|||
|
* Matrix3f defines a 3x3 matrix. Matrix data is maintained
|
|||
|
* internally and is accessible via the get and set methods. Convenience methods
|
|||
|
* are used for matrix operations as well as generating a matrix from a given
|
|||
|
* set of values.
|
|||
|
* 3X3<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
* @autohr HALX99 2016
|
|||
|
* @author Mark Powell
|
|||
|
* @author Joshua Slack
|
|||
|
|
|||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|||
|
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|||
|
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|||
|
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|||
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|||
|
DEALINGS IN THE SOFTWARE.
|
|||
|
*/
|
|||
|
#ifndef _MATRIX3F_H_
|
|||
|
#define _MATRIX3F_H_
|
|||
|
#include <cocos2d.h>
|
|||
|
|
|||
|
class Matrix3f {
|
|||
|
public:
|
|||
|
float m[9];
|
|||
|
|
|||
|
/**
|
|||
|
* Constructor instantiates a new Matrix3f object. The initial
|
|||
|
* values for the matrix is that of the identity matrix.
|
|||
|
* Ĭ<EFBFBD>Ϲ<EFBFBD><EFBFBD>쵥λ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
*/
|
|||
|
Matrix3f() {
|
|||
|
loadIdentity();
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* constructs a matrix with the given values.
|
|||
|
*
|
|||
|
* @param m[0]
|
|||
|
* 0x0 in the matrix.
|
|||
|
* @param m[1]
|
|||
|
* 0x1 in the matrix.
|
|||
|
* @param m[2]
|
|||
|
* 0x2 in the matrix.
|
|||
|
* @param m[3]
|
|||
|
* 1x0 in the matrix.
|
|||
|
* @param m[4]
|
|||
|
* 1x1 in the matrix.
|
|||
|
* @param m[5]
|
|||
|
* 1x2 in the matrix.
|
|||
|
* @param m[6]
|
|||
|
* 2x0 in the matrix.
|
|||
|
* @param m[7]
|
|||
|
* 2x1 in the matrix.
|
|||
|
* @param m[8]
|
|||
|
* 2x2 in the matrix.
|
|||
|
*/
|
|||
|
Matrix3f(float m[9]) {
|
|||
|
|
|||
|
this->m[0] = m[0];
|
|||
|
this->m[1] = m[1];
|
|||
|
this->m[2] = m[2];
|
|||
|
this->m[3] = m[3];
|
|||
|
this->m[4] = m[4];
|
|||
|
this->m[5] = m[5];
|
|||
|
this->m[6] = m[6];
|
|||
|
this->m[8] = m[7];
|
|||
|
this->m[9] = m[8];
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* get retrieves a value from the matrix at the given position.
|
|||
|
* If the position is invalid a JmeException is thrown.
|
|||
|
* <EFBFBD><EFBFBD>ȡָ<EFBFBD><EFBFBD>λ<EFBFBD>õ<EFBFBD>Ԫ<EFBFBD><EFBFBD>ֵ
|
|||
|
*
|
|||
|
* @param i
|
|||
|
* the row index.<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȡֵ<EFBFBD><EFBFBD>Χ<EFBFBD><EFBFBD>0<EFBFBD><EFBFBD>1<EFBFBD><EFBFBD>2<EFBFBD><EFBFBD>
|
|||
|
* @param j
|
|||
|
* the colum index.<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȡֵ<EFBFBD><EFBFBD>Χ<EFBFBD><EFBFBD>0<EFBFBD><EFBFBD>1<EFBFBD><EFBFBD>2<EFBFBD><EFBFBD>
|
|||
|
* @return the value at (i, j).
|
|||
|
*/
|
|||
|
float get(int i, int j) {
|
|||
|
switch (i) {
|
|||
|
case 0:
|
|||
|
switch (j) {
|
|||
|
case 0:
|
|||
|
return m[0];
|
|||
|
case 1:
|
|||
|
return m[1];
|
|||
|
case 2:
|
|||
|
return m[2];
|
|||
|
}
|
|||
|
case 1:
|
|||
|
switch (j) {
|
|||
|
case 0:
|
|||
|
return m[3];
|
|||
|
case 1:
|
|||
|
return m[4];
|
|||
|
case 2:
|
|||
|
return m[5];
|
|||
|
}
|
|||
|
case 2:
|
|||
|
switch (j) {
|
|||
|
case 0:
|
|||
|
return m[6];
|
|||
|
case 1:
|
|||
|
return m[7];
|
|||
|
case 2:
|
|||
|
return m[8];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// throw new JmeException("Invalid indices into matrix.");
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* get(float[]) returns the matrix in row-major or column-major
|
|||
|
* order.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>л<EFBFBD><EFBFBD>е<EFBFBD>˳<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>data<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param data
|
|||
|
* The array to return the data into. This array can be 9 or 16
|
|||
|
* floats in size. Only the upper 3x3 are assigned to in the case
|
|||
|
* of a 16 element array.
|
|||
|
* @param rowMajor
|
|||
|
* True for row major storage in the array (translation in
|
|||
|
* elements 3, 7, 11 for a 4x4), false for column major
|
|||
|
* (translation in elements 12, 13, 14 for a 4x4).
|
|||
|
*/
|
|||
|
template<size_t _Length>
|
|||
|
void get(float(&data)[_Length], bool rowMajor) {
|
|||
|
if (_Length == 9) {
|
|||
|
if (rowMajor) {
|
|||
|
data[0] = m[0];
|
|||
|
data[1] = m[1];
|
|||
|
data[2] = m[2];
|
|||
|
data[3] = m[3];
|
|||
|
data[4] = m[4];
|
|||
|
data[5] = m[5];
|
|||
|
data[6] = m[6];
|
|||
|
data[7] = m[7];
|
|||
|
data[8] = m[8];
|
|||
|
}
|
|||
|
else {
|
|||
|
data[0] = m[0];
|
|||
|
data[1] = m[3];
|
|||
|
data[2] = m[6];
|
|||
|
data[3] = m[1];
|
|||
|
data[4] = m[4];
|
|||
|
data[5] = m[7];
|
|||
|
data[6] = m[2];
|
|||
|
data[7] = m[5];
|
|||
|
data[8] = m[8];
|
|||
|
}
|
|||
|
}
|
|||
|
else if (_Length == 16) {
|
|||
|
if (rowMajor) {
|
|||
|
data[0] = m[0];
|
|||
|
data[1] = m[1];
|
|||
|
data[2] = m[2];
|
|||
|
data[4] = m[3];
|
|||
|
data[5] = m[4];
|
|||
|
data[6] = m[5];
|
|||
|
data[8] = m[6];
|
|||
|
data[9] = m[7];
|
|||
|
data[10] = m[8];
|
|||
|
}
|
|||
|
else {
|
|||
|
data[0] = m[0];
|
|||
|
data[1] = m[3];
|
|||
|
data[2] = m[6];
|
|||
|
data[4] = m[1];
|
|||
|
data[5] = m[4];
|
|||
|
data[6] = m[7];
|
|||
|
data[8] = m[2];
|
|||
|
data[9] = m[5];
|
|||
|
data[10] = m[8];
|
|||
|
}
|
|||
|
}
|
|||
|
else {
|
|||
|
// throw new JmeException("Array size must be 9 or 16 in Matrix3f.get().");
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* getColumn returns one of three columns specified by the
|
|||
|
* parameter. This column is returned as a cocos2d::Vec3 object.
|
|||
|
* <EFBFBD><EFBFBD>ȡָ<EFBFBD><EFBFBD><EFBFBD>й<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param i
|
|||
|
* the column to retrieve. Must be between 0 and 2.
|
|||
|
* @param store
|
|||
|
* the vector object to store the result in. if null, a new one
|
|||
|
* is created.
|
|||
|
* @return the column specified by the index.
|
|||
|
*/
|
|||
|
cocos2d::Vec3 getColumn(int i) {
|
|||
|
cocos2d::Vec3 store;
|
|||
|
switch (i) {
|
|||
|
case 0:
|
|||
|
store.x = m[0];
|
|||
|
store.y = m[3];
|
|||
|
store.z = m[6];
|
|||
|
break;
|
|||
|
case 1:
|
|||
|
store.x = m[1];
|
|||
|
store.y = m[4];
|
|||
|
store.z = m[7];
|
|||
|
break;
|
|||
|
case 2:
|
|||
|
store.x = m[2];
|
|||
|
store.y = m[5];
|
|||
|
store.z = m[8];
|
|||
|
break;
|
|||
|
default:;
|
|||
|
//logger.warning("Invalid column index.");
|
|||
|
//throw new JmeException("Invalid column index. " + i);
|
|||
|
}
|
|||
|
return store;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/**
|
|||
|
* getRow returns one of three rows as specified by the
|
|||
|
* parameter. This row is returned as a cocos2d::Vec3 object.
|
|||
|
* <EFBFBD><EFBFBD>ȡָ<EFBFBD><EFBFBD><EFBFBD>й<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param i
|
|||
|
* the row to retrieve. Must be between 0 and 2.
|
|||
|
* @param store
|
|||
|
* the vector object to store the result in. if null, a new one
|
|||
|
* is created.
|
|||
|
* @return the row specified by the index.
|
|||
|
*/
|
|||
|
cocos2d::Vec3 getRow(int i) {
|
|||
|
cocos2d::Vec3 store;
|
|||
|
switch (i) {
|
|||
|
case 0:
|
|||
|
store.x = m[0];
|
|||
|
store.y = m[1];
|
|||
|
store.z = m[2];
|
|||
|
break;
|
|||
|
case 1:
|
|||
|
store.x = m[3];
|
|||
|
store.y = m[4];
|
|||
|
store.z = m[5];
|
|||
|
break;
|
|||
|
case 2:
|
|||
|
store.x = m[6];
|
|||
|
store.y = m[7];
|
|||
|
store.z = m[8];
|
|||
|
break;
|
|||
|
default:;
|
|||
|
// throw new JmeException("Invalid row index. " + i);
|
|||
|
}
|
|||
|
return store;
|
|||
|
}
|
|||
|
|
|||
|
std::string toString() {
|
|||
|
return "";
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/**
|
|||
|
*
|
|||
|
* setColumn sets a particular column of this matrix to that
|
|||
|
* represented by the provided vector.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD>ݸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param i
|
|||
|
* the column to set.
|
|||
|
* @param column
|
|||
|
* the data to set.
|
|||
|
*/
|
|||
|
void setColumn(int i, const cocos2d::Vec3& column) {
|
|||
|
|
|||
|
switch (i) {
|
|||
|
case 0:
|
|||
|
m[0] = column.x;
|
|||
|
m[3] = column.y;
|
|||
|
m[6] = column.z;
|
|||
|
break;
|
|||
|
case 1:
|
|||
|
m[1] = column.x;
|
|||
|
m[4] = column.y;
|
|||
|
m[7] = column.z;
|
|||
|
break;
|
|||
|
case 2:
|
|||
|
m[2] = column.x;
|
|||
|
m[5] = column.y;
|
|||
|
m[8] = column.z;
|
|||
|
break;
|
|||
|
default:;
|
|||
|
//logger.warning("Invalid column index.");
|
|||
|
//throw new JmeException("Invalid column index. " + i);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
*
|
|||
|
* setRow sets a particular row of this matrix to that
|
|||
|
* represented by the provided vector.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD>ݸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param i
|
|||
|
* the row to set.
|
|||
|
* @param row
|
|||
|
* the data to set.
|
|||
|
*/
|
|||
|
void setRow(int i, const cocos2d::Vec3& row) {
|
|||
|
switch (i) {
|
|||
|
case 0:
|
|||
|
m[0] = row.x;
|
|||
|
m[1] = row.y;
|
|||
|
m[2] = row.z;
|
|||
|
break;
|
|||
|
case 1:
|
|||
|
m[3] = row.x;
|
|||
|
m[4] = row.y;
|
|||
|
m[5] = row.z;
|
|||
|
break;
|
|||
|
case 2:
|
|||
|
m[6] = row.x;
|
|||
|
m[7] = row.y;
|
|||
|
m[8] = row.z;
|
|||
|
break;
|
|||
|
default:;
|
|||
|
// logger.warning("Invalid row index.");
|
|||
|
// throw new JmeException("Invalid row index. " + i);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* set places a given value into the matrix at the given
|
|||
|
* position. If the position is invalid a JmeException is
|
|||
|
* thrown.
|
|||
|
* <EFBFBD>趨ijλ<EFBFBD>õ<EFBFBD>ֵ
|
|||
|
*
|
|||
|
* @param i
|
|||
|
* the row index.
|
|||
|
* @param j
|
|||
|
* the colum index.
|
|||
|
* @param value
|
|||
|
* the value for (i, j).
|
|||
|
*/
|
|||
|
void set(int i, int j, float value) {
|
|||
|
switch (i) {
|
|||
|
case 0:
|
|||
|
switch (j) {
|
|||
|
case 0:
|
|||
|
m[0] = value;
|
|||
|
return;
|
|||
|
case 1:
|
|||
|
m[1] = value;
|
|||
|
return;
|
|||
|
case 2:
|
|||
|
m[2] = value;
|
|||
|
return;
|
|||
|
}
|
|||
|
case 1:
|
|||
|
switch (j) {
|
|||
|
case 0:
|
|||
|
m[3] = value;
|
|||
|
return;
|
|||
|
case 1:
|
|||
|
m[4] = value;
|
|||
|
return;
|
|||
|
case 2:
|
|||
|
m[5] = value;
|
|||
|
return;
|
|||
|
}
|
|||
|
case 2:
|
|||
|
switch (j) {
|
|||
|
case 0:
|
|||
|
m[6] = value;
|
|||
|
return;
|
|||
|
case 1:
|
|||
|
m[7] = value;
|
|||
|
return;
|
|||
|
case 2:
|
|||
|
m[8] = value;
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
//logger.warning("Invalid matrix index.");
|
|||
|
//throw new JmeException("Invalid indices into matrix.");
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
*
|
|||
|
* set sets the values of the matrix to those supplied by the
|
|||
|
* 3x3 two dimenion array.
|
|||
|
* <EFBFBD>ö<EFBFBD>ά<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD><EFBFBD>ֵ
|
|||
|
*
|
|||
|
* @param matrix
|
|||
|
* the new values of the matrix.
|
|||
|
* @throws JmeException
|
|||
|
* if the array is not of size 9.
|
|||
|
*/
|
|||
|
void set(float matrix[3][3]) {
|
|||
|
//if (matrix.length != 3 || matrix[0].length != 3) {
|
|||
|
// throw new JmeException("Array must be of size 9.");
|
|||
|
//}
|
|||
|
|
|||
|
m[0] = matrix[0][0];
|
|||
|
m[1] = matrix[0][1];
|
|||
|
m[2] = matrix[0][2];
|
|||
|
m[3] = matrix[1][0];
|
|||
|
m[4] = matrix[1][1];
|
|||
|
m[5] = matrix[1][2];
|
|||
|
m[6] = matrix[2][0];
|
|||
|
m[7] = matrix[2][1];
|
|||
|
m[8] = matrix[2][2];
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Recreate Matrix using the provided axis.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD>ݸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param uAxis
|
|||
|
* cocos2d::Vec3
|
|||
|
* @param vAxis
|
|||
|
* cocos2d::Vec3
|
|||
|
* @param wAxis
|
|||
|
* cocos2d::Vec3
|
|||
|
*/
|
|||
|
void set(const cocos2d::Vec3& uAxis, const cocos2d::Vec3& vAxis, const cocos2d::Vec3& wAxis) {
|
|||
|
m[0] = uAxis.x;
|
|||
|
m[3] = uAxis.y;
|
|||
|
m[6] = uAxis.z;
|
|||
|
|
|||
|
m[1] = vAxis.x;
|
|||
|
m[4] = vAxis.y;
|
|||
|
m[7] = vAxis.z;
|
|||
|
|
|||
|
m[2] = wAxis.x;
|
|||
|
m[5] = wAxis.y;
|
|||
|
m[8] = wAxis.z;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* set sets the values of this matrix from an array of values
|
|||
|
* assuming that the data is rowMajor order;
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD>ݸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>鰴<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param matrix
|
|||
|
* the matrix to set the value to.
|
|||
|
*/
|
|||
|
void set(float matrix[9]) {
|
|||
|
set(matrix, true);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* set sets the values of this matrix from an array of values;
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD>ݸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>鰴<EFBFBD>л<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param matrix
|
|||
|
* the matrix to set the value to.
|
|||
|
* @param rowMajor
|
|||
|
* whether the incoming data is in row or column major order.
|
|||
|
*/
|
|||
|
void set(float matrix[9], bool rowMajor) {
|
|||
|
//if (matrix.length != 9)
|
|||
|
// throw new JmeException("Array must be of size 9.");
|
|||
|
|
|||
|
if (rowMajor) {
|
|||
|
m[0] = matrix[0];
|
|||
|
m[1] = matrix[1];
|
|||
|
m[2] = matrix[2];
|
|||
|
m[3] = matrix[3];
|
|||
|
m[4] = matrix[4];
|
|||
|
m[5] = matrix[5];
|
|||
|
m[6] = matrix[6];
|
|||
|
m[7] = matrix[7];
|
|||
|
m[8] = matrix[8];
|
|||
|
}
|
|||
|
else {
|
|||
|
m[0] = matrix[0];
|
|||
|
m[1] = matrix[3];
|
|||
|
m[2] = matrix[6];
|
|||
|
m[3] = matrix[1];
|
|||
|
m[4] = matrix[4];
|
|||
|
m[5] = matrix[7];
|
|||
|
m[6] = matrix[2];
|
|||
|
m[7] = matrix[5];
|
|||
|
m[8] = matrix[8];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
*
|
|||
|
* set defines the values of the matrix based on a supplied
|
|||
|
* Quaternion. It should be noted that all previous values will
|
|||
|
* be overridden.
|
|||
|
* <EFBFBD><EFBFBD>Ԫ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param quaternion
|
|||
|
* the quaternion to create a rotational matrix from.
|
|||
|
*/
|
|||
|
void set(const cocos2d::Quaternion& quaternion) {
|
|||
|
//quaternion.toRotationMatrix(this);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* loadIdentity sets this matrix to the identity matrix. Where
|
|||
|
* all values are zero except those along the diagonal which are one.
|
|||
|
* <EFBFBD><EFBFBD>λ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
*/
|
|||
|
void loadIdentity() {
|
|||
|
m[1] = m[2] = m[3] = m[5] = m[6] = m[7] = 0;
|
|||
|
m[0] = m[4] = m[8] = 1;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* <EFBFBD>Ƿ<EFBFBD><EFBFBD><EFBFBD>λ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @return true if this matrix is identity
|
|||
|
*/
|
|||
|
bool isIdentity() {
|
|||
|
return (m[0] == 1 && m[1] == 0 && m[2] == 0)
|
|||
|
&& (m[3] == 0 && m[4] == 1 && m[5] == 0)
|
|||
|
&& (m[6] == 0 && m[7] == 0 && m[8] == 1);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the x-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void rotateX(float angle)
|
|||
|
{
|
|||
|
rotateX(std::sin(angle), std::cos(angle));
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the y-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void rotateY(float angle)
|
|||
|
{
|
|||
|
rotateY(std::sin(angle), std::cos(angle));
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the z-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void rotateZ(float angle)
|
|||
|
{
|
|||
|
rotateZ(std::sin(angle), std::cos(angle));
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the x-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void rotateX(float s, float c)
|
|||
|
{
|
|||
|
Matrix3f temp;
|
|||
|
temp.createRotationX(s, c);
|
|||
|
mult(temp);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the y-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void rotateY(float s, float c)
|
|||
|
{
|
|||
|
Matrix3f temp;
|
|||
|
temp.createRotationY(s, c);
|
|||
|
mult(temp);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the z-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void rotateZ(float s, float c)
|
|||
|
{
|
|||
|
Matrix3f temp;
|
|||
|
temp.createRotationZ(s, c);
|
|||
|
mult(temp);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* fromAngleAxis sets this matrix4f to the values specified by
|
|||
|
* an angle and an axis of rotation. This method creates an object, so use
|
|||
|
* fromAngleNormalAxis if your axis is already normalized.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD>axis<EFBFBD><EFBFBD><EFBFBD>ǵ<EFBFBD>λ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>תangle<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȣ<EFBFBD><EFBFBD>ǵ<EFBFBD>3D<EFBFBD><EFBFBD>ת<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param angle
|
|||
|
* the angle to rotate (in radians).
|
|||
|
* @param axis
|
|||
|
* the axis of rotation.
|
|||
|
*/
|
|||
|
void createRotation(const cocos2d::Vec3& axis, float angle) {
|
|||
|
createRotation(axis, std::sin(angle), std::cos(angle));
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* fromAngleNormalAxis sets this matrix4f to the values
|
|||
|
* specified by an angle and a normalized axis of rotation.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD>axis<EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>תangle<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȣ<EFBFBD><EFBFBD>ǵ<EFBFBD>3D<EFBFBD><EFBFBD>ת<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param angle
|
|||
|
* the angle to rotate (in radians).
|
|||
|
* @param axis
|
|||
|
* the axis of rotation (already normalized).
|
|||
|
*/
|
|||
|
void createRotation(const cocos2d::Vec3& axis, float fSin, float fCos) {
|
|||
|
float x = axis.x;
|
|||
|
float y = axis.y;
|
|||
|
float z = axis.z;
|
|||
|
// Make sure the input axis is normalized.
|
|||
|
float n = x*x + y*y + z*z;
|
|||
|
if (n != 1.0f)
|
|||
|
{
|
|||
|
// Not normalized.
|
|||
|
n = sqrt(n);
|
|||
|
// Prevent divide too close to zero.
|
|||
|
if (n > 0.000001f)
|
|||
|
{
|
|||
|
n = 1.0f / n;
|
|||
|
x *= n;
|
|||
|
y *= n;
|
|||
|
z *= n;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
float fOneMinusCos = ((float) 1.0) - fCos;
|
|||
|
float fX2 = x * x;
|
|||
|
float fY2 = y * y;
|
|||
|
float fZ2 = z * z;
|
|||
|
float fXYM = x * y * fOneMinusCos;
|
|||
|
float fXZM = x * z * fOneMinusCos;
|
|||
|
float fYZM = y * z * fOneMinusCos;
|
|||
|
float fXSin = x * fSin;
|
|||
|
float fYSin = y * fSin;
|
|||
|
float fZSin = z * fSin;
|
|||
|
|
|||
|
m[0] = fX2 * fOneMinusCos + fCos;
|
|||
|
m[1] = fXYM - fZSin;
|
|||
|
m[2] = fXZM + fYSin;
|
|||
|
m[3] = fXYM + fZSin;
|
|||
|
m[4] = fY2 * fOneMinusCos + fCos;
|
|||
|
m[5] = fYZM - fXSin;
|
|||
|
m[6] = fXZM - fYSin;
|
|||
|
m[7] = fYZM + fXSin;
|
|||
|
m[8] = fZ2 * fOneMinusCos + fCos;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the x-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void createRotationX(float s, float c)
|
|||
|
{
|
|||
|
m[4] = c;
|
|||
|
m[5] = s;
|
|||
|
m[7] = -s;
|
|||
|
m[8] = c;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the y-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void createRotationY(float s, float c)
|
|||
|
{
|
|||
|
m[0] = c;
|
|||
|
m[2] = -s;
|
|||
|
m[6] = s;
|
|||
|
m[8] = c;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a matrix describing a rotation around the z-axis.
|
|||
|
*
|
|||
|
* @param angle The angle of rotation (in radians).
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void createRotationZ(float s, float c)
|
|||
|
{
|
|||
|
m[0] = c;
|
|||
|
m[1] = s;
|
|||
|
m[3] = -s;
|
|||
|
m[4] = c;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a scale matrix.
|
|||
|
*
|
|||
|
* @param scale The amount to scale.
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void createScale(const cocos2d::Vec3& scale);
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a scale matrix.
|
|||
|
*
|
|||
|
* @param xScale The amount to scale along the x-axis.
|
|||
|
* @param yScale The amount to scale along the y-axis.
|
|||
|
* @param zScale The amount to scale along the z-axis.
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void createScale(float xScale, float yScale, float zScale);
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a translation matrix.
|
|||
|
*
|
|||
|
* @param translation The translation.
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void createTranslation(const cocos2d::Vec3& translation);
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a translation matrix.
|
|||
|
*
|
|||
|
* @param xTranslation The translation on the x-axis.
|
|||
|
* @param yTranslation The translation on the y-axis.
|
|||
|
* @param zTranslation The translation on the z-axis.
|
|||
|
* @param dst A matrix to store the result in.
|
|||
|
*/
|
|||
|
void createTranslation(float xTranslation, float yTranslation, float zTranslation);
|
|||
|
|
|||
|
/**
|
|||
|
* mult multiplies this matrix by a given matrix. The result
|
|||
|
* matrix is returned as a new object.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˷<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>product<EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param mat
|
|||
|
* the matrix to multiply this matrix by.
|
|||
|
* @param product
|
|||
|
* the matrix to store the result in. if null, a new matrix3f is
|
|||
|
* created. It is safe for mat and product to be the same object.
|
|||
|
* @return a matrix3f object containing the result of this operation
|
|||
|
*/
|
|||
|
Matrix3f& mult(const Matrix3f& mat) {
|
|||
|
return mult(mat, *this);
|
|||
|
}
|
|||
|
|
|||
|
Matrix3f& mult(const Matrix3f& mat, Matrix3f& product) const
|
|||
|
{
|
|||
|
float temp00, temp01, temp02;
|
|||
|
float temp10, temp11, temp12;
|
|||
|
float temp20, temp21, temp22;
|
|||
|
|
|||
|
temp00 = m[0] * mat.m[0] + m[1] * mat.m[3] + m[2] * mat.m[6];
|
|||
|
temp01 = m[0] * mat.m[1] + m[1] * mat.m[4] + m[2] * mat.m[7];
|
|||
|
temp02 = m[0] * mat.m[2] + m[1] * mat.m[5] + m[2] * mat.m[8];
|
|||
|
temp10 = m[3] * mat.m[0] + m[4] * mat.m[3] + m[5] * mat.m[6];
|
|||
|
temp11 = m[3] * mat.m[1] + m[4] * mat.m[4] + m[5] * mat.m[7];
|
|||
|
temp12 = m[3] * mat.m[2] + m[4] * mat.m[5] + m[5] * mat.m[8];
|
|||
|
temp20 = m[6] * mat.m[0] + m[7] * mat.m[3] + m[8] * mat.m[6];
|
|||
|
temp21 = m[6] * mat.m[1] + m[7] * mat.m[4] + m[8] * mat.m[7];
|
|||
|
temp22 = m[6] * mat.m[2] + m[7] * mat.m[5] + m[8] * mat.m[8];
|
|||
|
|
|||
|
product.m[0] = temp00;
|
|||
|
product.m[1] = temp01;
|
|||
|
product.m[2] = temp02;
|
|||
|
product.m[3] = temp10;
|
|||
|
product.m[4] = temp11;
|
|||
|
product.m[5] = temp12;
|
|||
|
product.m[6] = temp20;
|
|||
|
product.m[7] = temp21;
|
|||
|
product.m[8] = temp22;
|
|||
|
|
|||
|
return product;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Multiplies this 3x3 matrix by the 1x3 Vector vec and stores the result in
|
|||
|
* product.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>product<EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param vec
|
|||
|
* The cocos2d::Vec3 to multiply.
|
|||
|
* @return The given product vector.
|
|||
|
*/
|
|||
|
cocos2d::Vec3 mult(const cocos2d::Vec3& vec) const {
|
|||
|
|
|||
|
cocos2d::Vec3 product;
|
|||
|
|
|||
|
float x = vec.x;
|
|||
|
float y = vec.y;
|
|||
|
float z = vec.z;
|
|||
|
|
|||
|
product.x = m[0] * x + m[1] * y + m[2] * z;
|
|||
|
product.y = m[3] * x + m[4] * y + m[5] * z;
|
|||
|
product.z = m[6] * x + m[7] * y + m[8] * z;
|
|||
|
|
|||
|
return product;
|
|||
|
}
|
|||
|
|
|||
|
Matrix3f& premultAlpha(float alpha) {
|
|||
|
return multLocal(alpha);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* multLocal multiplies this matrix internally by a given float
|
|||
|
* scale factor.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param scale
|
|||
|
* the value to scale by.
|
|||
|
* @return this Matrix3f
|
|||
|
*/
|
|||
|
Matrix3f& multLocal(float scale) {
|
|||
|
m[0] *= scale;
|
|||
|
m[1] *= scale;
|
|||
|
m[2] *= scale;
|
|||
|
m[3] *= scale;
|
|||
|
m[4] *= scale;
|
|||
|
m[5] *= scale;
|
|||
|
m[6] *= scale;
|
|||
|
m[7] *= scale;
|
|||
|
m[8] *= scale;
|
|||
|
return *this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* add adds the values of a parameter matrix to this matrix.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ӷ<EFBFBD>
|
|||
|
*
|
|||
|
* @param mat
|
|||
|
* the matrix to add to this.
|
|||
|
*/
|
|||
|
Matrix3f& addLocal(const Matrix3f& mat) {
|
|||
|
m[0] += mat.m[0];
|
|||
|
m[1] += mat.m[1];
|
|||
|
m[2] += mat.m[2];
|
|||
|
m[3] += mat.m[3];
|
|||
|
m[4] += mat.m[4];
|
|||
|
m[5] += mat.m[5];
|
|||
|
m[6] += mat.m[6];
|
|||
|
m[7] += mat.m[7];
|
|||
|
m[8] += mat.m[8];
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* mult multiplies this matrix by a given matrix. The result
|
|||
|
* matrix is saved in the current matrix. If the given matrix is null,
|
|||
|
* nothing happens. The current matrix is returned. This is equivalent to
|
|||
|
* this*=mat
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ծ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param mat
|
|||
|
* the matrix to multiply this matrix by.
|
|||
|
* @return This matrix, after the multiplication
|
|||
|
*/
|
|||
|
/*void multLocal() {
|
|||
|
|
|||
|
return mult(mat, this);
|
|||
|
}*/
|
|||
|
|
|||
|
/**
|
|||
|
* Transposes this matrix in place. Returns this matrix for chaining
|
|||
|
* ת<EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @return This matrix after transpose
|
|||
|
*/
|
|||
|
Matrix3f& transposeLocal() {
|
|||
|
float tmp[9];
|
|||
|
get(tmp, false);
|
|||
|
set(tmp, true);
|
|||
|
return *this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Inverts this matrix and stores it in the given store.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڲ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ı<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @return The store
|
|||
|
*/
|
|||
|
Matrix3f invertNew(void) {
|
|||
|
Matrix3f store;
|
|||
|
float det = determinant();
|
|||
|
if (std::abs(det) <= 0)
|
|||
|
return store.zero();
|
|||
|
|
|||
|
store.m[0] = m[4] * m[8] - m[5] * m[7];
|
|||
|
store.m[1] = m[2] * m[7] - m[1] * m[8];
|
|||
|
store.m[2] = m[1] * m[5] - m[2] * m[4];
|
|||
|
store.m[3] = m[5] * m[6] - m[3] * m[8];
|
|||
|
store.m[4] = m[0] * m[8] - m[2] * m[6];
|
|||
|
store.m[5] = m[2] * m[3] - m[0] * m[5];
|
|||
|
store.m[6] = m[3] * m[7] - m[4] * m[6];
|
|||
|
store.m[7] = m[1] * m[6] - m[0] * m[7];
|
|||
|
store.m[8] = m[0] * m[4] - m[1] * m[3];
|
|||
|
|
|||
|
store.multLocal(1 / det);
|
|||
|
return store;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Inverts this matrix locally.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ı<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @return this
|
|||
|
*/
|
|||
|
Matrix3f& invertLocal() {
|
|||
|
float det = determinant();
|
|||
|
if (std::abs(det) <= FLT_EPSILON)
|
|||
|
return zero();
|
|||
|
|
|||
|
float f00 = m[4] * m[8] - m[5] * m[7];
|
|||
|
float f01 = m[2] * m[7] - m[1] * m[8];
|
|||
|
float f02 = m[1] * m[5] - m[2] * m[4];
|
|||
|
float f10 = m[5] * m[6] - m[3] * m[8];
|
|||
|
float f11 = m[0] * m[8] - m[2] * m[6];
|
|||
|
float f12 = m[2] * m[3] - m[0] * m[5];
|
|||
|
float f20 = m[3] * m[7] - m[4] * m[6];
|
|||
|
float f21 = m[1] * m[6] - m[0] * m[7];
|
|||
|
float f22 = m[0] * m[4] - m[1] * m[3];
|
|||
|
|
|||
|
m[0] = f00;
|
|||
|
m[1] = f01;
|
|||
|
m[2] = f02;
|
|||
|
m[3] = f10;
|
|||
|
m[4] = f11;
|
|||
|
m[5] = f12;
|
|||
|
m[6] = f20;
|
|||
|
m[7] = f21;
|
|||
|
m[8] = f22;
|
|||
|
|
|||
|
multLocal(1 / det);
|
|||
|
return *this;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/**
|
|||
|
* Places the adjoint of this matrix in store (creates store if null.)
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param store
|
|||
|
* The matrix to store the result in. If null, a new matrix is
|
|||
|
* created.
|
|||
|
* @return store
|
|||
|
*/
|
|||
|
Matrix3f adjoint() {
|
|||
|
Matrix3f store;
|
|||
|
|
|||
|
store.m[0] = m[4] * m[8] - m[5] * m[7];
|
|||
|
store.m[1] = m[2] * m[7] - m[1] * m[8];
|
|||
|
store.m[2] = m[1] * m[5] - m[2] * m[4];
|
|||
|
store.m[3] = m[5] * m[6] - m[3] * m[8];
|
|||
|
store.m[4] = m[0] * m[8] - m[2] * m[6];
|
|||
|
store.m[5] = m[2] * m[3] - m[0] * m[5];
|
|||
|
store.m[6] = m[3] * m[7] - m[4] * m[6];
|
|||
|
store.m[7] = m[1] * m[6] - m[0] * m[7];
|
|||
|
store.m[8] = m[0] * m[4] - m[1] * m[3];
|
|||
|
|
|||
|
return store;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* determinant generates the determinate of this matrix.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ
|
|||
|
*
|
|||
|
* @return the determinate
|
|||
|
*/
|
|||
|
float determinant() {
|
|||
|
float fCo00 = m[4] * m[8] - m[5] * m[7];
|
|||
|
float fCo10 = m[5] * m[6] - m[3] * m[8];
|
|||
|
float fCo20 = m[3] * m[7] - m[4] * m[6];
|
|||
|
float fDet = m[0] * fCo00 + m[1] * fCo10 + m[2] * fCo20;
|
|||
|
return fDet;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Sets all of the values in this matrix to zero.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ0
|
|||
|
*
|
|||
|
* @return this matrix
|
|||
|
*/
|
|||
|
Matrix3f& zero() {
|
|||
|
m[0] = m[1] = m[2] = m[3] = m[4] = m[5] = m[6] = m[7] = m[8] = 0.0f;
|
|||
|
return *this;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* transposeNew returns a transposed version of this matrix.
|
|||
|
* ת<EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @return The new Matrix3f object.
|
|||
|
*/
|
|||
|
Matrix3f transposeNew() {
|
|||
|
float temp[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
|
|||
|
return Matrix3f(temp);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* are these two matrices the same? they are is they both have the same mXX
|
|||
|
* values.
|
|||
|
*
|
|||
|
* @param o
|
|||
|
* the object to compare for equality
|
|||
|
* @return true if they are equal
|
|||
|
*/
|
|||
|
bool equals(const Matrix3f& o) const {
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* A function for creating a rotation matrix that rotates a vector called
|
|||
|
* "start" into another vector called "end".
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>start<EFBFBD><EFBFBD>ת<EFBFBD><EFBFBD>end
|
|||
|
*
|
|||
|
* @param start
|
|||
|
* normalized non-zero starting vector
|
|||
|
* @param end
|
|||
|
* normalized non-zero ending vector
|
|||
|
* @see "Tomas M?ller, John Hughes /"Efficiently Building a Matrix to Rotate
|
|||
|
* / One Vector to Another/" Journal of Graphics Tools, 4(4):1-4, 1999"
|
|||
|
*/
|
|||
|
void fromStartEndVectors(cocos2d::Vec3 start, cocos2d::Vec3 end) {
|
|||
|
cocos2d::Vec3 v ;
|
|||
|
float e, h, f;
|
|||
|
|
|||
|
cocos2d::Vec3::cross(start, end, &v);
|
|||
|
e = start.dot(end);
|
|||
|
f = (e < 0) ? -e : e;
|
|||
|
|
|||
|
// if "from" and "to" vectors are nearly parallel
|
|||
|
if (f > 1.0f - FLT_EPSILON) {
|
|||
|
cocos2d::Vec3 u ;
|
|||
|
cocos2d::Vec3 x ;
|
|||
|
float c1, c2, c3; /* coefficients for later use */
|
|||
|
int i, j;
|
|||
|
|
|||
|
x.x = (start.x > 0.0) ? start.x : -start.x;
|
|||
|
x.y = (start.y > 0.0) ? start.y : -start.y;
|
|||
|
x.z = (start.z > 0.0) ? start.z : -start.z;
|
|||
|
|
|||
|
if (x.x < x.y) {
|
|||
|
if (x.x < x.z) {
|
|||
|
x.x = 1.0f;
|
|||
|
x.y = x.z = 0.0f;
|
|||
|
}
|
|||
|
else {
|
|||
|
x.z = 1.0f;
|
|||
|
x.x = x.y = 0.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
else {
|
|||
|
if (x.y < x.z) {
|
|||
|
x.y = 1.0f;
|
|||
|
x.x = x.z = 0.0f;
|
|||
|
}
|
|||
|
else {
|
|||
|
x.z = 1.0f;
|
|||
|
x.x = x.y = 0.0f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
u.x = x.x - start.x;
|
|||
|
u.y = x.y - start.y;
|
|||
|
u.z = x.z - start.z;
|
|||
|
v.x = x.x - end.x;
|
|||
|
v.y = x.y - end.y;
|
|||
|
v.z = x.z - end.z;
|
|||
|
|
|||
|
c1 = 2.0f / u.dot(u);
|
|||
|
c2 = 2.0f / v.dot(v);
|
|||
|
c3 = c1 * c2 * u.dot(v);
|
|||
|
|
|||
|
for (i = 0; i < 3; i++) {
|
|||
|
for (j = 0; j < 3; j++) {
|
|||
|
float val = -c1 * (&u.x)[i] * (&u.x)[j] - c2 * (&v.x)[i]
|
|||
|
* (&v.x)[j] + c3 * (&v.x)[i] * (&u.x)[j];
|
|||
|
set(i, j, val);
|
|||
|
}
|
|||
|
float val = get(i, i);
|
|||
|
set(i, i, val + 1.0f);
|
|||
|
}
|
|||
|
}
|
|||
|
else {
|
|||
|
// the most common case, unless "start"="end", or "start"=-"end"
|
|||
|
float hvx, hvz, hvxy, hvxz, hvyz;
|
|||
|
h = 1.0f / (1.0f + e);
|
|||
|
hvx = h * v.x;
|
|||
|
hvz = h * v.z;
|
|||
|
hvxy = hvx * v.y;
|
|||
|
hvxz = hvx * v.z;
|
|||
|
hvyz = hvz * v.y;
|
|||
|
set(0, 0, e + hvx * v.x);
|
|||
|
set(0, 1, hvxy - v.z);
|
|||
|
set(0, 2, hvxz + v.y);
|
|||
|
|
|||
|
set(1, 0, hvxy + v.z);
|
|||
|
set(1, 1, e + h * v.y * v.y);
|
|||
|
set(1, 2, hvyz - v.x);
|
|||
|
|
|||
|
set(2, 0, hvxz - v.y);
|
|||
|
set(2, 1, hvyz + v.x);
|
|||
|
set(2, 2, e + hvz * v.z);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* scale scales the operation performed by this matrix on a
|
|||
|
* per-component basis.
|
|||
|
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>зֱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
*
|
|||
|
* @param scale
|
|||
|
* The scale applied to each of the X, Y and Z output values.
|
|||
|
*/
|
|||
|
void scale(cocos2d::Vec3 scale) {
|
|||
|
m[0] *= scale.x;
|
|||
|
m[3] *= scale.x;
|
|||
|
m[6] *= scale.x;
|
|||
|
m[1] *= scale.y;
|
|||
|
m[4] *= scale.y;
|
|||
|
m[7] *= scale.y;
|
|||
|
m[2] *= scale.z;
|
|||
|
m[5] *= scale.z;
|
|||
|
m[8] *= scale.z;
|
|||
|
}
|
|||
|
|
|||
|
static bool equalIdentity(const Matrix3f& mat) {
|
|||
|
if (std::abs(mat.m[0] - 1) > 1e-4)
|
|||
|
return false;
|
|||
|
if (std::abs(mat.m[4] - 1) > 1e-4)
|
|||
|
return false;
|
|||
|
if (std::abs(mat.m[8] - 1) > 1e-4)
|
|||
|
return false;
|
|||
|
|
|||
|
if (std::abs(mat.m[1]) > 1e-4)
|
|||
|
return false;
|
|||
|
if (std::abs(mat.m[2]) > 1e-4)
|
|||
|
return false;
|
|||
|
|
|||
|
if (std::abs(mat.m[3]) > 1e-4)
|
|||
|
return false;
|
|||
|
if (std::abs(mat.m[5]) > 1e-4)
|
|||
|
return false;
|
|||
|
|
|||
|
if (std::abs(mat.m[6]) > 1e-4)
|
|||
|
return false;
|
|||
|
if (std::abs(mat.m[7]) > 1e-4)
|
|||
|
return false;
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
#endif
|