axmol/chipmunk/src/cpBBTree.c

892 lines
23 KiB
C
Raw Normal View History

/* Copyright (c) 2009 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "stdlib.h"
#include "stdio.h"
#include "chipmunk_private.h"
static inline cpSpatialIndexClass *Klass();
typedef struct Node Node;
typedef struct Pair Pair;
struct cpBBTree {
cpSpatialIndex spatialIndex;
cpBBTreeVelocityFunc velocityFunc;
cpHashSet *leaves;
Node *root;
Node *pooledNodes;
Pair *pooledPairs;
cpArray *allocatedBuffers;
cpTimestamp stamp;
};
struct Node {
void *obj;
cpBB bb;
Node *parent;
union {
// Internal nodes
struct { Node *a, *b; } children;
// Leaves
struct {
cpTimestamp stamp;
Pair *pairs;
} leaf;
} node;
};
// Can't use anonymous unions and still get good x-compiler compatability
#define A node.children.a
#define B node.children.b
#define STAMP node.leaf.stamp
#define PAIRS node.leaf.pairs
typedef struct Thread {
Pair *prev;
Node *leaf;
Pair *next;
} Thread;
struct Pair { Thread a, b; };
//MARK: Misc Functions
static inline cpBB
GetBB(cpBBTree *tree, void *obj)
{
cpBB bb = tree->spatialIndex.bbfunc(obj);
cpBBTreeVelocityFunc velocityFunc = tree->velocityFunc;
if(velocityFunc){
cpFloat coef = 0.1f;
cpFloat x = (bb.r - bb.l)*coef;
cpFloat y = (bb.t - bb.b)*coef;
cpVect v = cpvmult(velocityFunc(obj), 0.1f);
return cpBBNew(bb.l + cpfmin(-x, v.x), bb.b + cpfmin(-y, v.y), bb.r + cpfmax(x, v.x), bb.t + cpfmax(y, v.y));
} else {
return bb;
}
}
static inline cpBBTree *
GetTree(cpSpatialIndex *index)
{
return (index && index->klass == Klass() ? (cpBBTree *)index : NULL);
}
static inline Node *
GetRootIfTree(cpSpatialIndex *index){
return (index && index->klass == Klass() ? ((cpBBTree *)index)->root : NULL);
}
static inline cpTimestamp
GetStamp(cpBBTree *tree)
{
cpBBTree *dynamicTree = GetTree(tree->spatialIndex.dynamicIndex);
return (dynamicTree ? dynamicTree->stamp : tree->stamp);
}
static inline void
IncrementStamp(cpBBTree *tree)
{
cpBBTree *dynamicTree = GetTree(tree->spatialIndex.dynamicIndex);
if(dynamicTree){
dynamicTree->stamp++;
} else {
tree->stamp++;
}
}
//MARK: Pair/Thread Functions
static void
PairRecycle(cpBBTree *tree, Pair *pair)
{
pair->a.next = tree->pooledPairs;
tree->pooledPairs = pair;
}
static Pair *
PairFromPool(cpBBTree *tree)
{
Pair *pair = tree->pooledPairs;
if(pair){
tree->pooledPairs = pair->a.next;
return pair;
} else {
// Pool is exhausted, make more
int count = CP_BUFFER_BYTES/sizeof(Pair);
cpAssertHard(count, "Internal Error: Buffer size is too small.");
Pair *buffer = (Pair *)cpcalloc(1, CP_BUFFER_BYTES);
cpArrayPush(tree->allocatedBuffers, buffer);
// push all but the first one, return the first instead
for(int i=1; i<count; i++) PairRecycle(tree, buffer + i);
return buffer;
}
}
static inline void
ThreadUnlink(Thread thread)
{
Pair *next = thread.next;
Pair *prev = thread.prev;
if(next){
if(next->a.leaf == thread.leaf) next->a.prev = prev; else next->b.prev = prev;
}
if(prev){
if(prev->a.leaf == thread.leaf) prev->a.next = next; else prev->b.next = next;
} else {
thread.leaf->PAIRS = next;
}
}
static void
PairsClear(Node *leaf, cpBBTree *tree)
{
Pair *pair = leaf->PAIRS;
leaf->PAIRS = NULL;
while(pair){
if(pair->a.leaf == leaf){
Pair *next = pair->a.next;
ThreadUnlink(pair->b);
PairRecycle(tree, pair);
pair = next;
} else {
Pair *next = pair->b.next;
ThreadUnlink(pair->a);
PairRecycle(tree, pair);
pair = next;
}
}
}
static void
PairInsert(Node *a, Node *b, cpBBTree *tree)
{
Pair *nextA = a->PAIRS, *nextB = b->PAIRS;
Pair *pair = PairFromPool(tree);
Pair temp = {{NULL, a, nextA},{NULL, b, nextB}};
a->PAIRS = b->PAIRS = pair;
*pair = temp;
if(nextA){
if(nextA->a.leaf == a) nextA->a.prev = pair; else nextA->b.prev = pair;
}
if(nextB){
if(nextB->a.leaf == b) nextB->a.prev = pair; else nextB->b.prev = pair;
}
}
//MARK: Node Functions
static void
NodeRecycle(cpBBTree *tree, Node *node)
{
node->parent = tree->pooledNodes;
tree->pooledNodes = node;
}
static Node *
NodeFromPool(cpBBTree *tree)
{
Node *node = tree->pooledNodes;
if(node){
tree->pooledNodes = node->parent;
return node;
} else {
// Pool is exhausted, make more
int count = CP_BUFFER_BYTES/sizeof(Node);
cpAssertHard(count, "Internal Error: Buffer size is too small.");
Node *buffer = (Node *)cpcalloc(1, CP_BUFFER_BYTES);
cpArrayPush(tree->allocatedBuffers, buffer);
// push all but the first one, return the first instead
for(int i=1; i<count; i++) NodeRecycle(tree, buffer + i);
return buffer;
}
}
static inline void
NodeSetA(Node *node, Node *value)
{
node->A = value;
value->parent = node;
}
static inline void
NodeSetB(Node *node, Node *value)
{
node->B = value;
value->parent = node;
}
static Node *
NodeNew(cpBBTree *tree, Node *a, Node *b)
{
Node *node = NodeFromPool(tree);
node->obj = NULL;
node->bb = cpBBMerge(a->bb, b->bb);
node->parent = NULL;
NodeSetA(node, a);
NodeSetB(node, b);
return node;
}
static inline cpBool
NodeIsLeaf(Node *node)
{
return (node->obj != NULL);
}
static inline Node *
NodeOther(Node *node, Node *child)
{
return (node->A == child ? node->B : node->A);
}
static inline void
NodeReplaceChild(Node *parent, Node *child, Node *value, cpBBTree *tree)
{
cpAssertSoft(!NodeIsLeaf(parent), "Internal Error: Cannot replace child of a leaf.");
cpAssertSoft(child == parent->A || child == parent->B, "Internal Error: Node is not a child of parent.");
if(parent->A == child){
NodeRecycle(tree, parent->A);
NodeSetA(parent, value);
} else {
NodeRecycle(tree, parent->B);
NodeSetB(parent, value);
}
for(Node *node=parent; node; node = node->parent){
node->bb = cpBBMerge(node->A->bb, node->B->bb);
}
}
//MARK: Subtree Functions
static inline cpFloat
cpBBProximity(cpBB a, cpBB b)
{
return cpfabs(a.l + a.r - b.l - b.r) + cpfabs(a.b + b.t - b.b - b.t);
}
static Node *
SubtreeInsert(Node *subtree, Node *leaf, cpBBTree *tree)
{
if(subtree == NULL){
return leaf;
} else if(NodeIsLeaf(subtree)){
return NodeNew(tree, leaf, subtree);
} else {
cpFloat cost_a = cpBBArea(subtree->B->bb) + cpBBMergedArea(subtree->A->bb, leaf->bb);
cpFloat cost_b = cpBBArea(subtree->A->bb) + cpBBMergedArea(subtree->B->bb, leaf->bb);
if(cost_a == cost_b){
cost_a = cpBBProximity(subtree->A->bb, leaf->bb);
cost_b = cpBBProximity(subtree->B->bb, leaf->bb);
}
if(cost_b < cost_a){
NodeSetB(subtree, SubtreeInsert(subtree->B, leaf, tree));
} else {
NodeSetA(subtree, SubtreeInsert(subtree->A, leaf, tree));
}
subtree->bb = cpBBMerge(subtree->bb, leaf->bb);
return subtree;
}
}
static void
SubtreeQuery(Node *subtree, void *obj, cpBB bb, cpSpatialIndexQueryFunc func, void *data)
{
if(cpBBIntersects(subtree->bb, bb)){
if(NodeIsLeaf(subtree)){
func(obj, subtree->obj, data);
} else {
SubtreeQuery(subtree->A, obj, bb, func, data);
SubtreeQuery(subtree->B, obj, bb, func, data);
}
}
}
static cpFloat
SubtreeSegmentQuery(Node *subtree, void *obj, cpVect a, cpVect b, cpFloat t_exit, cpSpatialIndexSegmentQueryFunc func, void *data)
{
if(NodeIsLeaf(subtree)){
return func(obj, subtree->obj, data);
} else {
cpFloat t_a = cpBBSegmentQuery(subtree->A->bb, a, b);
cpFloat t_b = cpBBSegmentQuery(subtree->B->bb, a, b);
if(t_a < t_b){
if(t_a < t_exit) t_exit = cpfmin(t_exit, SubtreeSegmentQuery(subtree->A, obj, a, b, t_exit, func, data));
if(t_b < t_exit) t_exit = cpfmin(t_exit, SubtreeSegmentQuery(subtree->B, obj, a, b, t_exit, func, data));
} else {
if(t_b < t_exit) t_exit = cpfmin(t_exit, SubtreeSegmentQuery(subtree->B, obj, a, b, t_exit, func, data));
if(t_a < t_exit) t_exit = cpfmin(t_exit, SubtreeSegmentQuery(subtree->A, obj, a, b, t_exit, func, data));
}
return t_exit;
}
}
static void
SubtreeRecycle(cpBBTree *tree, Node *node)
{
if(!NodeIsLeaf(node)){
SubtreeRecycle(tree, node->A);
SubtreeRecycle(tree, node->B);
NodeRecycle(tree, node);
}
}
static inline Node *
SubtreeRemove(Node *subtree, Node *leaf, cpBBTree *tree)
{
if(leaf == subtree){
return NULL;
} else {
Node *parent = leaf->parent;
if(parent == subtree){
Node *other = NodeOther(subtree, leaf);
other->parent = subtree->parent;
NodeRecycle(tree, subtree);
return other;
} else {
NodeReplaceChild(parent->parent, parent, NodeOther(parent, leaf), tree);
return subtree;
}
}
}
//MARK: Marking Functions
typedef struct MarkContext {
cpBBTree *tree;
Node *staticRoot;
cpSpatialIndexQueryFunc func;
void *data;
} MarkContext;
static void
MarkLeafQuery(Node *subtree, Node *leaf, cpBool left, MarkContext *context)
{
if(cpBBIntersects(leaf->bb, subtree->bb)){
if(NodeIsLeaf(subtree)){
if(left){
PairInsert(leaf, subtree, context->tree);
} else {
if(subtree->STAMP < leaf->STAMP) PairInsert(subtree, leaf, context->tree);
context->func(leaf->obj, subtree->obj, context->data);
}
} else {
MarkLeafQuery(subtree->A, leaf, left, context);
MarkLeafQuery(subtree->B, leaf, left, context);
}
}
}
static void
MarkLeaf(Node *leaf, MarkContext *context)
{
cpBBTree *tree = context->tree;
if(leaf->STAMP == GetStamp(tree)){
Node *staticRoot = context->staticRoot;
if(staticRoot) MarkLeafQuery(staticRoot, leaf, cpFalse, context);
for(Node *node = leaf; node->parent; node = node->parent){
if(node == node->parent->A){
MarkLeafQuery(node->parent->B, leaf, cpTrue, context);
} else {
MarkLeafQuery(node->parent->A, leaf, cpFalse, context);
}
}
} else {
Pair *pair = leaf->PAIRS;
while(pair){
if(leaf == pair->b.leaf){
context->func(pair->a.leaf->obj, leaf->obj, context->data);
pair = pair->b.next;
} else {
pair = pair->a.next;
}
}
}
}
static void
MarkSubtree(Node *subtree, MarkContext *context)
{
if(NodeIsLeaf(subtree)){
MarkLeaf(subtree, context);
} else {
MarkSubtree(subtree->A, context);
MarkSubtree(subtree->B, context);
}
}
//MARK: Leaf Functions
static Node *
LeafNew(cpBBTree *tree, void *obj, cpBB bb)
{
Node *node = NodeFromPool(tree);
node->obj = obj;
node->bb = GetBB(tree, obj);
node->parent = NULL;
node->STAMP = 0;
node->PAIRS = NULL;
return node;
}
static cpBool
LeafUpdate(Node *leaf, cpBBTree *tree)
{
Node *root = tree->root;
cpBB bb = tree->spatialIndex.bbfunc(leaf->obj);
if(!cpBBContainsBB(leaf->bb, bb)){
leaf->bb = GetBB(tree, leaf->obj);
root = SubtreeRemove(root, leaf, tree);
tree->root = SubtreeInsert(root, leaf, tree);
PairsClear(leaf, tree);
leaf->STAMP = GetStamp(tree);
return cpTrue;
}
return cpFalse;
}
static void VoidQueryFunc(void *obj1, void *obj2, void *data){}
static void
LeafAddPairs(Node *leaf, cpBBTree *tree)
{
cpSpatialIndex *dynamicIndex = tree->spatialIndex.dynamicIndex;
if(dynamicIndex){
Node *dynamicRoot = GetRootIfTree(dynamicIndex);
if(dynamicRoot){
cpBBTree *dynamicTree = GetTree(dynamicIndex);
MarkContext context = {dynamicTree, NULL, NULL, NULL};
MarkLeafQuery(dynamicRoot, leaf, cpTrue, &context);
}
} else {
Node *staticRoot = GetRootIfTree(tree->spatialIndex.staticIndex);
MarkContext context = {tree, staticRoot, VoidQueryFunc, NULL};
MarkLeaf(leaf, &context);
}
}
//MARK: Memory Management Functions
cpBBTree *
cpBBTreeAlloc(void)
{
return (cpBBTree *)cpcalloc(1, sizeof(cpBBTree));
}
static int
leafSetEql(void *obj, Node *node)
{
return (obj == node->obj);
}
static void *
leafSetTrans(void *obj, cpBBTree *tree)
{
return LeafNew(tree, obj, tree->spatialIndex.bbfunc(obj));
}
cpSpatialIndex *
cpBBTreeInit(cpBBTree *tree, cpSpatialIndexBBFunc bbfunc, cpSpatialIndex *staticIndex)
{
cpSpatialIndexInit((cpSpatialIndex *)tree, Klass(), bbfunc, staticIndex);
tree->velocityFunc = NULL;
tree->leaves = cpHashSetNew(0, (cpHashSetEqlFunc)leafSetEql);
tree->root = NULL;
tree->pooledNodes = NULL;
tree->allocatedBuffers = cpArrayNew(0);
tree->stamp = 0;
return (cpSpatialIndex *)tree;
}
void
cpBBTreeSetVelocityFunc(cpSpatialIndex *index, cpBBTreeVelocityFunc func)
{
if(index->klass != Klass()){
cpAssertWarn(cpFalse, "Ignoring cpBBTreeSetVelocityFunc() call to non-tree spatial index.");
return;
}
((cpBBTree *)index)->velocityFunc = func;
}
cpSpatialIndex *
cpBBTreeNew(cpSpatialIndexBBFunc bbfunc, cpSpatialIndex *staticIndex)
{
return cpBBTreeInit(cpBBTreeAlloc(), bbfunc, staticIndex);
}
static void
cpBBTreeDestroy(cpBBTree *tree)
{
cpHashSetFree(tree->leaves);
if(tree->allocatedBuffers) cpArrayFreeEach(tree->allocatedBuffers, cpfree);
cpArrayFree(tree->allocatedBuffers);
}
//MARK: Insert/Remove
static void
cpBBTreeInsert(cpBBTree *tree, void *obj, cpHashValue hashid)
{
Node *leaf = (Node *)cpHashSetInsert(tree->leaves, hashid, obj, tree, (cpHashSetTransFunc)leafSetTrans);
Node *root = tree->root;
tree->root = SubtreeInsert(root, leaf, tree);
leaf->STAMP = GetStamp(tree);
LeafAddPairs(leaf, tree);
IncrementStamp(tree);
}
static void
cpBBTreeRemove(cpBBTree *tree, void *obj, cpHashValue hashid)
{
Node *leaf = (Node *)cpHashSetRemove(tree->leaves, hashid, obj);
tree->root = SubtreeRemove(tree->root, leaf, tree);
PairsClear(leaf, tree);
NodeRecycle(tree, leaf);
}
static cpBool
cpBBTreeContains(cpBBTree *tree, void *obj, cpHashValue hashid)
{
return (cpHashSetFind(tree->leaves, hashid, obj) != NULL);
}
//MARK: Reindex
static void
cpBBTreeReindexQuery(cpBBTree *tree, cpSpatialIndexQueryFunc func, void *data)
{
if(!tree->root) return;
// LeafUpdate() may modify tree->root. Don't cache it.
cpHashSetEach(tree->leaves, (cpHashSetIteratorFunc)LeafUpdate, tree);
cpSpatialIndex *staticIndex = tree->spatialIndex.staticIndex;
Node *staticRoot = (staticIndex && staticIndex->klass == Klass() ? ((cpBBTree *)staticIndex)->root : NULL);
MarkContext context = {tree, staticRoot, func, data};
MarkSubtree(tree->root, &context);
if(staticIndex && !staticRoot) cpSpatialIndexCollideStatic((cpSpatialIndex *)tree, staticIndex, func, data);
IncrementStamp(tree);
}
static void
cpBBTreeReindex(cpBBTree *tree)
{
cpBBTreeReindexQuery(tree, VoidQueryFunc, NULL);
}
static void
cpBBTreeReindexObject(cpBBTree *tree, void *obj, cpHashValue hashid)
{
Node *leaf = (Node *)cpHashSetFind(tree->leaves, hashid, obj);
if(leaf){
if(LeafUpdate(leaf, tree)) LeafAddPairs(leaf, tree);
IncrementStamp(tree);
}
}
//MARK: Query
static void
cpBBTreePointQuery(cpBBTree *tree, cpVect point, cpSpatialIndexQueryFunc func, void *data)
{
Node *root = tree->root;
if(root) SubtreeQuery(root, &point, cpBBNew(point.x, point.y, point.x, point.y), func, data);
}
static void
cpBBTreeSegmentQuery(cpBBTree *tree, void *obj, cpVect a, cpVect b, cpFloat t_exit, cpSpatialIndexSegmentQueryFunc func, void *data)
{
Node *root = tree->root;
if(root) SubtreeSegmentQuery(root, obj, a, b, t_exit, func, data);
}
static void
cpBBTreeQuery(cpBBTree *tree, void *obj, cpBB bb, cpSpatialIndexQueryFunc func, void *data)
{
if(tree->root) SubtreeQuery(tree->root, obj, bb, func, data);
}
//MARK: Misc
static int
cpBBTreeCount(cpBBTree *tree)
{
return cpHashSetCount(tree->leaves);
}
typedef struct eachContext {
cpSpatialIndexIteratorFunc func;
void *data;
} eachContext;
static void each_helper(Node *node, eachContext *context){context->func(node->obj, context->data);}
static void
cpBBTreeEach(cpBBTree *tree, cpSpatialIndexIteratorFunc func, void *data)
{
eachContext context = {func, data};
cpHashSetEach(tree->leaves, (cpHashSetIteratorFunc)each_helper, &context);
}
static cpSpatialIndexClass klass = {
(cpSpatialIndexDestroyImpl)cpBBTreeDestroy,
(cpSpatialIndexCountImpl)cpBBTreeCount,
(cpSpatialIndexEachImpl)cpBBTreeEach,
(cpSpatialIndexContainsImpl)cpBBTreeContains,
(cpSpatialIndexInsertImpl)cpBBTreeInsert,
(cpSpatialIndexRemoveImpl)cpBBTreeRemove,
(cpSpatialIndexReindexImpl)cpBBTreeReindex,
(cpSpatialIndexReindexObjectImpl)cpBBTreeReindexObject,
(cpSpatialIndexReindexQueryImpl)cpBBTreeReindexQuery,
(cpSpatialIndexPointQueryImpl)cpBBTreePointQuery,
(cpSpatialIndexSegmentQueryImpl)cpBBTreeSegmentQuery,
(cpSpatialIndexQueryImpl)cpBBTreeQuery,
};
static inline cpSpatialIndexClass *Klass(){return &klass;}
//MARK: Tree Optimization
static int
cpfcompare(const cpFloat *a, const cpFloat *b){
return (*a < *b ? -1 : (*b < *a ? 1 : 0));
}
static void
fillNodeArray(Node *node, Node ***cursor){
(**cursor) = node;
(*cursor)++;
}
static Node *
partitionNodes(cpBBTree *tree, Node **nodes, int count)
{
if(count == 1){
return nodes[0];
} else if(count == 2) {
return NodeNew(tree, nodes[0], nodes[1]);
}
// Find the AABB for these nodes
cpBB bb = nodes[0]->bb;
for(int i=1; i<count; i++) bb = cpBBMerge(bb, nodes[i]->bb);
// Split it on it's longest axis
cpBool splitWidth = (bb.r - bb.l > bb.t - bb.b);
// Sort the bounds and use the median as the splitting point
cpFloat *bounds = (cpFloat *)cpcalloc(count*2, sizeof(cpFloat));
if(splitWidth){
for(int i=0; i<count; i++){
bounds[2*i + 0] = nodes[i]->bb.l;
bounds[2*i + 1] = nodes[i]->bb.r;
}
} else {
for(int i=0; i<count; i++){
bounds[2*i + 0] = nodes[i]->bb.b;
bounds[2*i + 1] = nodes[i]->bb.t;
}
}
qsort(bounds, count*2, sizeof(cpFloat), (int (*)(const void *, const void *))cpfcompare);
cpFloat split = (bounds[count - 1] + bounds[count])*0.5f; // use the medain as the split
cpfree(bounds);
// Generate the child BBs
cpBB a = bb, b = bb;
if(splitWidth) a.r = b.l = split; else a.t = b.b = split;
// Partition the nodes
int right = count;
for(int left=0; left < right;){
Node *node = nodes[left];
if(cpBBMergedArea(node->bb, b) < cpBBMergedArea(node->bb, a)){
// if(cpBBProximity(node->bb, b) < cpBBProximity(node->bb, a)){
right--;
nodes[left] = nodes[right];
nodes[right] = node;
} else {
left++;
}
}
if(right == count){
Node *node = NULL;
for(int i=0; i<count; i++) node = SubtreeInsert(node, nodes[i], tree);
return node;
}
// Recurse and build the node!
return NodeNew(tree,
partitionNodes(tree, nodes, right),
partitionNodes(tree, nodes + right, count - right)
);
}
//static void
//cpBBTreeOptimizeIncremental(cpBBTree *tree, int passes)
//{
// for(int i=0; i<passes; i++){
// Node *root = tree->root;
// Node *node = root;
// int bit = 0;
// unsigned int path = tree->opath;
//
// while(!NodeIsLeaf(node)){
// node = (path&(1<<bit) ? node->a : node->b);
// bit = (bit + 1)&(sizeof(unsigned int)*8 - 1);
// }
//
// root = subtreeRemove(root, node, tree);
// tree->root = subtreeInsert(root, node, tree);
// }
//}
void
cpBBTreeOptimize(cpSpatialIndex *index)
{
if(index->klass != &klass){
cpAssertWarn(cpFalse, "Ignoring cpBBTreeOptimize() call to non-tree spatial index.");
return;
}
cpBBTree *tree = (cpBBTree *)index;
Node *root = tree->root;
if(!root) return;
int count = cpBBTreeCount(tree);
Node **nodes = (Node **)cpcalloc(count, sizeof(Node *));
Node **cursor = nodes;
cpHashSetEach(tree->leaves, (cpHashSetIteratorFunc)fillNodeArray, &cursor);
SubtreeRecycle(tree, root);
tree->root = partitionNodes(tree, nodes, count);
cpfree(nodes);
}
//MARK: Debug Draw
//#define CP_BBTREE_DEBUG_DRAW
#ifdef CP_BBTREE_DEBUG_DRAW
#include "OpenGL/gl.h"
#include "OpenGL/glu.h"
#include <GLUT/glut.h>
static void
NodeRender(Node *node, int depth)
{
if(!NodeIsLeaf(node) && depth <= 10){
NodeRender(node->a, depth + 1);
NodeRender(node->b, depth + 1);
}
cpBB bb = node->bb;
// GLfloat v = depth/2.0f;
// glColor3f(1.0f - v, v, 0.0f);
glLineWidth(cpfmax(5.0f - depth, 1.0f));
glBegin(GL_LINES); {
glVertex2f(bb.l, bb.b);
glVertex2f(bb.l, bb.t);
glVertex2f(bb.l, bb.t);
glVertex2f(bb.r, bb.t);
glVertex2f(bb.r, bb.t);
glVertex2f(bb.r, bb.b);
glVertex2f(bb.r, bb.b);
glVertex2f(bb.l, bb.b);
}; glEnd();
}
void
cpBBTreeRenderDebug(cpSpatialIndex *index){
if(index->klass != &klass){
cpAssertWarn(cpFalse, "Ignoring cpBBTreeRenderDebug() call to non-tree spatial index.");
return;
}
cpBBTree *tree = (cpBBTree *)index;
if(tree->root) NodeRender(tree->root, 0);
}
#endif