axmol/extensions/Effekseer/EffekseerMaterialCompiler/GLSLGenerator/ShaderGenerator.cpp

1180 lines
27 KiB
C++
Raw Normal View History

#include "ShaderGenerator.h"
#include "../Common/ShaderGeneratorCommon.h"
#include <iostream>
#undef min
#undef max
namespace Effekseer
{
namespace GLSL
{
static const char* material_light_vs = R"(
vec3 GetLightDirection() {
return vec3(0,0,0);
}
vec3 GetLightColor() {
return vec3(0,0,0);
}
vec3 GetLightAmbientColor() {
return vec3(0,0,0);
}
)";
static const char* material_light_ps = R"(
vec3 GetLightDirection() {
return lightDirection.xyz;
}
vec3 GetLightColor() {
return lightColor.xyz;
}
vec3 GetLightAmbientColor() {
return lightAmbientColor.xyz;
}
)";
static const char* material_common_define_450 = R"(
#version 450
#define LAYOUT(ind) layout(location = ind)
#define lowp
#define mediump
#define highp
#define IN in
#define OUT out
#define CENTROID centroid
)";
static const char* material_common_define_not_450 = R"(
#define LAYOUT(ind)
)";
static const char* material_common_define =
R"(
#define MOD mod
#define FRAC fract
#define LERP mix
#define float2 vec2
#define float3 vec3
#define float4 vec4
#define half2 vec2
#define half3 vec3
#define half4 vec4
#define int2 ivec2
#define int3 ivec3
#define int4 ivec4
float atan2(in float y, in float x) {
return x == 0.0 ? sign(y)* 3.141592 / 2.0 : atan(y, x);
}
)";
static const char* material_common_vs_define = R"()"
R"(
// Dummy
float CalcDepthFade(vec2 screenUV, float meshZ, float softParticleParam) { return 1.0; }
)";
static const char* material_common_vs_define_450 = R"()"
R"(
#define TEX2D textureLod
)";
static const char* material_common_fs_define_450 = R"()"
R"(
#define TEX2D texture
)";
static const char g_material_model_vs_src_pre[] =
R"(
LAYOUT(0) IN vec4 a_Position;
LAYOUT(1) IN vec3 a_Normal;
LAYOUT(2) IN vec3 a_Binormal;
LAYOUT(3) IN vec3 a_Tangent;
LAYOUT(4) IN vec2 a_TexCoord;
LAYOUT(5) IN vec4 a_Color;
)"
R"(
LAYOUT(0) CENTROID OUT lowp vec4 v_VColor;
LAYOUT(1) CENTROID OUT mediump vec2 v_UV1;
LAYOUT(2) CENTROID OUT mediump vec2 v_UV2;
LAYOUT(3) OUT mediump vec4 v_WorldN_PX;
LAYOUT(4) OUT mediump vec4 v_WorldB_PY;
LAYOUT(5) OUT mediump vec4 v_WorldT_PZ;
LAYOUT(6) OUT mediump vec4 v_PosP;
//$C_OUT1$
//$C_OUT2$
)";
static const char g_material_model_vs_src_pre_uniform[] =
R"(
uniform mat4 ProjectionMatrix;
#ifdef EFK__INSTANCING_DISABLED__
uniform mat4 ModelMatrix;
uniform vec4 UVOffset;
uniform vec4 ModelColor;
#else
uniform mat4 ModelMatrix[_INSTANCE_COUNT_];
uniform vec4 UVOffset[_INSTANCE_COUNT_];
uniform vec4 ModelColor[_INSTANCE_COUNT_];
#endif
uniform vec4 mUVInversed;
uniform vec4 predefined_uniform;
uniform vec4 cameraPosition;
)";
static const char g_material_model_vs_src_suf1[] =
R"(
vec2 GetUV(vec2 uv)
{
uv.y = mUVInversed.x + mUVInversed.y * uv.y;
return uv;
}
vec2 GetUVBack(vec2 uv)
{
uv.y = mUVInversed.z + mUVInversed.w * uv.y;
return uv;
}
void main()
{
#ifdef EFK__INSTANCING_DISABLED__
mat4 modelMatrix = ModelMatrix;
vec4 uvOffset = UVOffset;
vec4 modelColor = ModelColor * a_Color;
#else
mat4 modelMatrix = ModelMatrix[int(gl_InstanceID)];
vec4 uvOffset = UVOffset[int(gl_InstanceID)];
vec4 modelColor = ModelColor[int(gl_InstanceID)] * a_Color;
#endif
mat3 modelMatRot = mat3(modelMatrix);
vec3 worldPos = (modelMatrix * a_Position).xyz;
vec3 worldNormal = normalize(modelMatRot * a_Normal);
vec3 worldBinormal = normalize(modelMatRot * a_Binormal);
vec3 worldTangent = normalize(modelMatRot * a_Tangent);
vec3 objectScale = vec3(1.0, 1.0, 1.0);
// Calculate ObjectScale
objectScale.x = length(modelMatRot * vec3(1.0, 0.0, 0.0));
objectScale.y = length(modelMatRot * vec3(0.0, 1.0, 0.0));
objectScale.z = length(modelMatRot * vec3(0.0, 0.0, 1.0));
// UV
vec2 uv1 = a_TexCoord.xy * uvOffset.zw + uvOffset.xy;
vec2 uv2 = a_TexCoord.xy;
//uv1.y = mUVInversed.x + mUVInversed.y * uv1.y;
//uv1.y = mUVInversed.x + mUVInversed.y * uv1.y;
vec3 pixelNormalDir = worldNormal;
vec4 vcolor = modelColor;
// Dummy
vec2 screenUV = vec2(0.0, 0.0);
float meshZ = 0.0;
)";
static const char g_material_model_vs_src_suf2[] =
R"(
worldPos = worldPos + worldPositionOffset;
v_WorldN_PX.w = worldPos.x;
v_WorldB_PY.w = worldPos.y;
v_WorldT_PZ.w = worldPos.z;
v_WorldN_PX.xyz = worldNormal;
v_WorldB_PY.xyz = worldBinormal;
v_WorldT_PZ.xyz = worldTangent;
v_UV1 = uv1;
v_UV2 = uv2;
v_VColor = vcolor;
gl_Position = ProjectionMatrix * vec4(worldPos, 1.0);
// v_ScreenUV.xy = gl_Position.xy / gl_Position.w;
// v_ScreenUV.xy = vec2(v_ScreenUV.x + 1.0, v_ScreenUV.y + 1.0) * 0.5;
v_PosP = gl_Position;
#ifdef _Y_INVERTED_
gl_Position.y = - gl_Position.y;
#endif
}
)";
static const char g_material_sprite_vs_src_pre_simple[] =
R"(
LAYOUT(0) IN vec4 atPosition;
LAYOUT(1) IN vec4 atColor;
LAYOUT(2) IN vec4 atTexCoord;
)"
R"(
LAYOUT(0) CENTROID OUT lowp vec4 v_VColor;
LAYOUT(1) CENTROID OUT mediump vec2 v_UV1;
LAYOUT(2) CENTROID OUT mediump vec2 v_UV2;
LAYOUT(3) OUT mediump vec4 v_WorldN_PX;
LAYOUT(4) OUT mediump vec4 v_WorldB_PY;
LAYOUT(5) OUT mediump vec4 v_WorldT_PZ;
LAYOUT(6) OUT mediump vec4 v_PosP;
)";
static const char g_material_sprite_vs_src_pre_simple_uniform[] =
R"(
uniform mat4 uMatCamera;
uniform mat4 uMatProjection;
uniform vec4 mUVInversed;
uniform vec4 predefined_uniform;
uniform vec4 cameraPosition;
)";
static const char g_material_sprite_vs_src_pre[] =
R"(
LAYOUT(0) IN vec4 atPosition;
LAYOUT(1) IN vec4 atColor;
LAYOUT(2) IN vec3 atNormal;
LAYOUT(3) IN vec3 atTangent;
LAYOUT(4) IN vec2 atTexCoord;
LAYOUT(5) IN vec2 atTexCoord2;
//$C_IN1$
//$C_IN2$
)"
R"(
LAYOUT(0) CENTROID OUT lowp vec4 v_VColor;
LAYOUT(1) CENTROID OUT mediump vec2 v_UV1;
LAYOUT(2) CENTROID OUT mediump vec2 v_UV2;
LAYOUT(3) OUT mediump vec4 v_WorldN_PX;
LAYOUT(4) OUT mediump vec4 v_WorldB_PY;
LAYOUT(5) OUT mediump vec4 v_WorldT_PZ;
LAYOUT(6) OUT mediump vec4 v_PosP;
//$C_OUT1$
//$C_OUT2$
)";
static const char g_material_sprite_vs_src_pre_uniform[] =
R"(
uniform mat4 uMatCamera;
uniform mat4 uMatProjection;
uniform vec4 mUVInversed;
uniform vec4 predefined_uniform;
uniform vec4 cameraPosition;
)";
static const char g_material_sprite_vs_src_suf1_simple[] =
R"(
vec2 GetUV(vec2 uv)
{
uv.y = mUVInversed.x + mUVInversed.y * uv.y;
return uv;
}
vec2 GetUVBack(vec2 uv)
{
uv.y = mUVInversed.z + mUVInversed.w * uv.y;
return uv;
}
void main() {
vec3 worldPos = atPosition.xyz;
vec3 objectScale = vec3(1.0, 1.0, 1.0);
// Dummy
vec2 screenUV = vec2(0.0, 0.0);
float meshZ = 0.0;
// UV
vec2 uv1 = atTexCoord.xy;
//uv1.y = mUVInversed.x + mUVInversed.y * uv1.y;
vec2 uv2 = uv1;
// NBT
vec3 worldNormal = vec3(0.0, 0.0, 0.0);
vec3 worldBinormal = vec3(0.0, 0.0, 0.0);
vec3 worldTangent = vec3(0.0, 0.0, 0.0);
v_WorldN_PX.xyz = worldNormal;
v_WorldB_PY.xyz = worldBinormal;
v_WorldT_PZ.xyz = worldTangent;
vec3 pixelNormalDir = worldNormal;
vec4 vcolor = atColor;
)";
static const char g_material_sprite_vs_src_suf1[] =
R"(
vec2 GetUV(vec2 uv)
{
uv.y = mUVInversed.x + mUVInversed.y * uv.y;
return uv;
}
vec2 GetUVBack(vec2 uv)
{
uv.y = mUVInversed.z + mUVInversed.w * uv.y;
return uv;
}
void main() {
vec3 worldPos = atPosition.xyz;
vec3 objectScale = vec3(1.0, 1.0, 1.0);
// Dummy
vec2 screenUV = vec2(0.0, 0.0);
float meshZ = 0.0;
// UV
vec2 uv1 = atTexCoord.xy;
//uv1.y = mUVInversed.x + mUVInversed.y * uv1.y;
vec2 uv2 = atTexCoord2.xy;
//uv2.y = mUVInversed.x + mUVInversed.y * uv2.y;
// NBT
vec3 worldNormal = (atNormal - vec3(0.5, 0.5, 0.5)) * 2.0;
vec3 worldTangent = (atTangent - vec3(0.5, 0.5, 0.5)) * 2.0;
vec3 worldBinormal = cross(worldNormal, worldTangent);
v_WorldN_PX.xyz = worldNormal;
v_WorldB_PY.xyz = worldBinormal;
v_WorldT_PZ.xyz = worldTangent;
vec3 pixelNormalDir = worldNormal;
vec4 vcolor = atColor;
)";
static const char g_material_sprite_vs_src_suf2[] =
R"(
worldPos = worldPos + worldPositionOffset;
vec4 cameraPos = uMatCamera * vec4(worldPos, 1.0);
cameraPos = cameraPos / cameraPos.w;
gl_Position = uMatProjection * cameraPos;
v_WorldN_PX.w = worldPos.x;
v_WorldB_PY.w = worldPos.y;
v_WorldT_PZ.w = worldPos.z;
v_VColor = vcolor;
v_UV1 = uv1;
v_UV2 = uv2;
//v_ScreenUV.xy = gl_Position.xy / gl_Position.w;
//v_ScreenUV.xy = vec2(v_ScreenUV.x + 1.0, v_ScreenUV.y + 1.0) * 0.5;
v_PosP = gl_Position;
#ifdef _Y_INVERTED_
gl_Position.y = - gl_Position.y;
#endif
}
)";
static const char g_material_fs_src_pre[] =
R"(
LAYOUT(0) CENTROID IN lowp vec4 v_VColor;
LAYOUT(1) CENTROID IN mediump vec2 v_UV1;
LAYOUT(2) CENTROID IN mediump vec2 v_UV2;
LAYOUT(3) IN mediump vec4 v_WorldN_PX;
LAYOUT(4) IN mediump vec4 v_WorldB_PY;
LAYOUT(5) IN mediump vec4 v_WorldT_PZ;
LAYOUT(6) IN mediump vec4 v_PosP;
//$C_PIN1$
//$C_PIN2$
)";
static const char g_material_fs_src_pre_uniform[] =
R"(
uniform vec4 mUVInversedBack;
uniform vec4 predefined_uniform;
uniform vec4 cameraPosition;
uniform vec4 reconstructionParam1;
uniform vec4 reconstructionParam2;
)";
static const char g_material_fs_src_suf1[] =
R"(
vec2 GetUV(vec2 uv)
{
uv.y = mUVInversedBack.x + mUVInversedBack.y * uv.y;
return uv;
}
vec2 GetUVBack(vec2 uv)
{
uv.y = mUVInversedBack.z + mUVInversedBack.w * uv.y;
return uv;
}
float CalcDepthFade(vec2 screenUV, float meshZ, float softParticleParam)
{
float backgroundZ = TEX2D(efk_depth, GetUVBack(screenUV)).x;
float distance = softParticleParam * predefined_uniform.y;
vec2 rescale = reconstructionParam1.xy;
vec4 params = reconstructionParam2;
vec2 zs = vec2(backgroundZ * rescale.x + rescale.y, meshZ);
vec2 depth = (zs * params.w - params.y) / (params.x - zs * params.z);
float dir = sign(depth.x);
depth *= dir;
return min(max((depth.x - depth.y) / distance, 0.0), 1.0);
}
#ifdef _MATERIAL_LIT_
const float lightScale = 3.14;
float saturate(float v)
{
return max(min(v, 1.0), 0.0);
}
float calcD_GGX(float roughness, float dotNH)
{
float alpha = roughness*roughness;
float alphaSqr = alpha*alpha;
float pi = 3.14159;
float denom = dotNH * dotNH *(alphaSqr-1.0) + 1.0;
return (alpha / denom) * (alpha / denom) / pi;
}
float calcF(float F0, float dotLH)
{
float dotLH5 = pow(1.0-dotLH,5.0);
return F0 + (1.0-F0)*(dotLH5);
}
float calcG_Schlick(float roughness, float dotNV, float dotNL)
{
// UE4
float k = (roughness + 1.0) * (roughness + 1.0) / 8.0;
// float k = roughness * roughness / 2.0;
float gV = dotNV*(1.0 - k) + k;
float gL = dotNL*(1.0 - k) + k;
return 1.0 / (gV * gL);
}
float calcLightingGGX(vec3 N, vec3 V, vec3 L, float roughness, float F0)
{
vec3 H = normalize(V+L);
float dotNL = saturate( dot(N,L) );
float dotLH = saturate( dot(L,H) );
float dotNH = saturate( dot(N,H) ) - 0.001;
float dotNV = saturate( dot(N,V) ) + 0.001;
float D = calcD_GGX(roughness, dotNH);
float F = calcF(F0, dotLH);
float G = calcG_Schlick(roughness, dotNV, dotNL);
return dotNL * D * F * G / 4.0;
}
vec3 calcDirectionalLightDiffuseColor(vec3 diffuseColor, vec3 normal, vec3 lightDir, float ao)
{
vec3 color = vec3(0.0,0.0,0.0);
float NoL = dot(normal,lightDir);
color.xyz = lightColor.xyz * lightScale * max(NoL,0.0) * ao / 3.14;
color.xyz = color.xyz * diffuseColor.xyz;
return color;
}
#endif
void main()
{
vec2 uv1 = v_UV1;
vec2 uv2 = v_UV2;
vec3 worldPos = vec3(v_WorldN_PX.w, v_WorldB_PY.w, v_WorldT_PZ.w);
vec3 worldNormal = v_WorldN_PX.xyz;
vec3 worldTangent = v_WorldT_PZ.xyz;
vec3 worldBinormal = v_WorldB_PY.xyz;
vec3 pixelNormalDir = worldNormal;
vec4 vcolor = v_VColor;
vec3 objectScale = vec3(1.0, 1.0, 1.0);
vec2 screenUV = v_PosP.xy / v_PosP.w;
float meshZ = v_PosP.z / v_PosP.w;
screenUV.xy = vec2(screenUV.x + 1.0, screenUV.y + 1.0) * 0.5;
#ifdef _SCREEN_FLIPPED_
screenUV.y = 1.0 - screenUV.y;
#endif
)";
static const char g_material_fs_src_suf2_lit[] =
R"(
vec3 viewDir = normalize(cameraPosition.xyz - worldPos);
vec3 diffuse = calcDirectionalLightDiffuseColor(baseColor, pixelNormalDir, lightDirection.xyz, ambientOcclusion);
vec3 specular = lightColor.xyz * lightScale * calcLightingGGX(pixelNormalDir, viewDir, lightDirection.xyz, roughness, 0.9);
vec4 Output = vec4(metallic * specular + (1.0 - metallic) * diffuse + baseColor * lightAmbientColor.xyz * ambientOcclusion, opacity);
Output.xyz = Output.xyz + emissive.xyz;
if(opacityMask <= 0.0) discard;
if(opacity <= 0.0) discard;
FRAGCOLOR = ConvertToScreen(Output);
}
)";
static const char g_material_fs_src_suf2_unlit[] =
R"(
if(opacityMask <= 0.0) discard;
if(opacity <= 0.0) discard;
FRAGCOLOR = ConvertToScreen(vec4(emissive, opacity));
}
)";
static const char g_material_fs_src_suf2_refraction[] =
R"(
float airRefraction = 1.0;
vec3 dir = mat3(cameraMat) * pixelNormalDir;
vec2 distortUV = dir.xy * (refraction - airRefraction);
distortUV += screenUV;
distortUV = GetUVBack(distortUV);
vec4 bg = TEX2D(efk_background, distortUV);
FRAGCOLOR = bg;
if(opacityMask <= 0.0) discard;
if(opacity <= 0.0) discard;
}
)";
std::string ShaderGenerator::Replace(std::string target, std::string from_, std::string to_)
{
std::string::size_type Pos(target.find(from_));
while (Pos != std::string::npos)
{
target.replace(Pos, from_.length(), to_);
Pos = target.find(from_, Pos + to_.length());
}
return target;
}
std::string ShaderGenerator::GetType(int32_t i)
{
if (i == 1)
return "float";
if (i == 2)
return "vec2";
if (i == 3)
return "vec3";
if (i == 4)
return "vec4";
if (i == 16)
return "mat4";
assert(0);
return "";
}
std::string ShaderGenerator::GetElement(int32_t i)
{
if (i == 1)
return ".x";
if (i == 2)
return ".xy";
if (i == 3)
return ".xyz";
if (i == 4)
return ".xyzw";
assert(0);
return "";
}
void ShaderGenerator::ExportUniform(std::ostringstream& maincode, int32_t type, const char* name)
{
maincode << "uniform " << GetType(type) << " " << name << ";" << std::endl;
}
void ShaderGenerator::ExportTexture(std::ostringstream& maincode, const char* name, int bind, int stage)
{
if (useUniformBlock_)
{
if (useSet_)
{
maincode << "layout(set = " << stage << ", binding = " << (bind + textureBindingOffset_) << ") uniform sampler2D " << name
<< ";" << std::endl;
}
else
{
maincode << "layout(binding = " << (bind + textureBindingOffset_) << ") uniform sampler2D " << name << ";" << std::endl;
}
}
else
{
maincode << "uniform sampler2D " << name << ";" << std::endl;
}
}
void ShaderGenerator::ExportHeader(std::ostringstream& maincode, MaterialFile* materialFile, int stage, bool isSprite, bool isOutputDefined, bool is450)
{
if (is450)
{
maincode << material_common_define_450;
}
else
{
maincode << material_common_define_not_450;
}
maincode << material_common_define;
if (stage == 0)
{
maincode << material_common_vs_define;
}
// Adhoc
if (is450)
{
if (stage == 0)
{
maincode << material_common_vs_define_450;
}
else if (stage == 1)
{
maincode << material_common_fs_define_450;
}
}
if (stage == 0)
{
if (isSprite)
{
if (materialFile->GetIsSimpleVertex())
{
maincode << g_material_sprite_vs_src_pre_simple;
}
else
{
maincode << g_material_sprite_vs_src_pre;
}
}
else
{
maincode << g_material_model_vs_src_pre;
}
}
else
{
maincode << g_material_fs_src_pre;
}
if (isOutputDefined && stage == 1)
{
maincode << "#define FRAGCOLOR out_flagColor" << std::endl;
maincode << "layout(location = 0) out vec4 out_flagColor;" << std::endl;
maincode << std::endl;
}
// gradient
bool hasGradient = false;
bool hasNoise = false;
for (const auto& type : materialFile->RequiredMethods)
{
if (type == MaterialFile::RequiredPredefinedMethodType::Gradient)
{
hasGradient = true;
}
else if (type == MaterialFile::RequiredPredefinedMethodType::Noise)
{
hasNoise = true;
}
}
if (hasGradient)
{
maincode << Effekseer::Shader::GetGradientFunctions();
}
if (hasNoise)
{
maincode << Effekseer::Shader::GetNoiseFunctions();
}
for (const auto& gradient : materialFile->FixedGradients)
{
maincode << Effekseer::Shader::GetFixedGradient(gradient.Name.c_str(), gradient.Data);
}
}
void ShaderGenerator::ExportDefaultUniform(std::ostringstream& maincode, MaterialFile* materialFile, int stage, bool isSprite)
{
if (stage == 0)
{
if (isSprite)
{
if (materialFile->GetIsSimpleVertex())
{
maincode << g_material_sprite_vs_src_pre_simple_uniform;
}
else
{
maincode << g_material_sprite_vs_src_pre_uniform;
}
}
else
{
maincode << g_material_model_vs_src_pre_uniform;
}
}
else
{
maincode << g_material_fs_src_pre_uniform;
}
}
void ShaderGenerator::ExportMain(std::ostringstream& maincode,
MaterialFile* materialFile,
int stage,
bool isSprite,
MaterialShaderType shaderType,
const std::string& baseCode,
bool useUniformBlock)
{
if (stage == 0)
{
if (isSprite)
{
if (materialFile->GetIsSimpleVertex())
{
maincode << g_material_sprite_vs_src_suf1_simple;
}
else
{
maincode << g_material_sprite_vs_src_suf1;
}
}
else
{
maincode << g_material_model_vs_src_suf1;
}
if (materialFile->GetCustomData1Count() > 0)
{
if (isSprite)
{
maincode << GetType(materialFile->GetCustomData1Count()) + " customData1 = atCustomData1;\n";
}
else
{
maincode << "#ifndef EFK__INSTANCING_DISABLED__" << std::endl;
maincode << GetType(4) + " customData1 = customData1s[int(gl_InstanceID)];\n";
maincode << "#endif" << std::endl;
}
maincode << "v_CustomData1 = customData1" + GetElement(materialFile->GetCustomData1Count()) + ";\n";
}
if (materialFile->GetCustomData2Count() > 0)
{
if (isSprite)
{
maincode << GetType(materialFile->GetCustomData2Count()) + " customData2 = atCustomData2;\n";
}
else
{
maincode << "#ifndef EFK__INSTANCING_DISABLED__" << std::endl;
maincode << GetType(4) + " customData2 = customData2s[int(gl_InstanceID)];\n";
maincode << "#endif" << std::endl;
}
maincode << "v_CustomData2 = customData2" + GetElement(materialFile->GetCustomData2Count()) + ";\n";
}
maincode << baseCode;
if (isSprite)
{
maincode << g_material_sprite_vs_src_suf2;
}
else
{
maincode << g_material_model_vs_src_suf2;
}
}
else
{
maincode << g_material_fs_src_suf1;
if (materialFile->GetCustomData1Count() > 0)
{
maincode << GetType(materialFile->GetCustomData1Count()) + " customData1 = v_CustomData1;\n";
}
if (materialFile->GetCustomData2Count() > 0)
{
maincode << GetType(materialFile->GetCustomData2Count()) + " customData2 = v_CustomData2;\n";
}
maincode << baseCode;
if (shaderType == MaterialShaderType::Refraction || shaderType == MaterialShaderType::RefractionModel)
{
maincode << g_material_fs_src_suf2_refraction;
}
else
{
if (materialFile->GetShadingModel() == Effekseer::ShadingModelType::Lit)
{
maincode << g_material_fs_src_suf2_lit;
}
else if (materialFile->GetShadingModel() == Effekseer::ShadingModelType::Unlit)
{
maincode << g_material_fs_src_suf2_unlit;
}
}
}
}
ShaderData ShaderGenerator::GenerateShader(MaterialFile* materialFile,
MaterialShaderType shaderType,
int32_t maximumUniformCount,
int32_t maximumTextureCount,
bool useUniformBlock,
bool isOutputDefined,
bool is450,
bool useSet,
int textureBindingOffset,
bool isYInverted,
bool isScreenFlipped,
int instanceCount)
{
useUniformBlock_ = useUniformBlock;
useSet_ = useSet;
textureBindingOffset_ = textureBindingOffset;
bool isSprite = shaderType == MaterialShaderType::Standard || shaderType == MaterialShaderType::Refraction;
bool isRefrection = materialFile->GetHasRefraction() &&
(shaderType == MaterialShaderType::Refraction || shaderType == MaterialShaderType::RefractionModel);
ShaderData shaderData;
for (int stage = 0; stage < 2; stage++)
{
std::ostringstream maincode;
ExportHeader(maincode, materialFile, stage, isSprite, isOutputDefined, is450);
if (isYInverted)
{
maincode << "#define _Y_INVERTED_ 1" << std::endl;
}
if (isScreenFlipped)
{
maincode << "#define _SCREEN_FLIPPED_ 1" << std::endl;
}
maincode << "#define _INSTANCE_COUNT_ " << instanceCount << std::endl;
// TODO : Replace DIRTY CODE
if (textureBindingOffset > 0)
{
// Vulkan
maincode << "#define gl_InstanceID gl_InstanceIndex" << std::endl;
}
int32_t actualUniformCount = std::min(maximumUniformCount, materialFile->GetUniformCount());
int32_t actualTextureCount = std::min(maximumTextureCount, materialFile->GetTextureCount());
for (int32_t i = 0; i < actualTextureCount; i++)
{
auto textureName = materialFile->GetTextureName(i);
ExportTexture(maincode, textureName, i, stage);
}
ExportTexture(maincode, "efk_background", actualTextureCount + 0, stage);
ExportTexture(maincode, "efk_depth", actualTextureCount + 1, stage);
// Uniform block begin
if (useUniformBlock)
{
if (useSet_)
{
if (stage == 0)
{
maincode << "layout(set = 0, binding = 0) uniform Block {" << std::endl;
}
else if (stage == 1)
{
maincode << "layout(set = 1, binding = 0) uniform Block {" << std::endl;
}
}
else
{
if (stage == 0)
{
maincode << "layout(binding = 0) uniform Block {" << std::endl;
}
else if (stage == 1)
{
maincode << "layout(binding = 0) uniform Block {" << std::endl;
}
}
}
ExportDefaultUniform(maincode, materialFile, stage, isSprite);
if (stage == 1)
{
ExportUniform(maincode, 4, "lightDirection");
ExportUniform(maincode, 4, "lightColor");
ExportUniform(maincode, 4, "lightAmbientColor");
}
if (materialFile->GetShadingModel() == ::Effekseer::ShadingModelType::Lit && stage == 1)
{
maincode << "#define _MATERIAL_LIT_ 1" << std::endl;
}
else if (materialFile->GetShadingModel() == ::Effekseer::ShadingModelType::Unlit)
{
}
if (isRefrection && stage == 1)
{
ExportUniform(maincode, 16, "cameraMat");
}
if (!isSprite && stage == 0)
{
if (materialFile->GetCustomData1Count() > 0)
{
maincode << R"(
#ifdef EFK__INSTANCING_DISABLED__
uniform vec4 customData1;
#else
uniform vec4 customData1s[_INSTANCE_COUNT_];
#endif
)" << std::endl;
}
if (materialFile->GetCustomData2Count() > 0)
{
maincode << R"(
#ifdef EFK__INSTANCING_DISABLED__
uniform vec4 customData2;
#else
uniform vec4 customData2s[_INSTANCE_COUNT_];
#endif
)" << std::endl;
}
}
for (int32_t i = 0; i < actualUniformCount; i++)
{
auto uniformName = materialFile->GetUniformName(i);
ExportUniform(maincode, 4, uniformName);
}
for (int32_t i = actualUniformCount; i < materialFile->GetUniformCount(); i++)
{
auto uniformName = materialFile->GetUniformName(i);
maincode << "const " << GetType(4) << " " << uniformName << "= vec4(0,0,0,0);" << std::endl;
}
for (size_t i = 0; i < materialFile->Gradients.size(); i++)
{
// TODO : remove a magic number
for (size_t j = 0; j < 13; j++)
{
ExportUniform(maincode, 4, (materialFile->Gradients[i].Name + "_" + std::to_string(j)).c_str());
}
}
// Uniform block end
if (useUniformBlock)
{
maincode << "};" << std::endl;
}
if (std::find(materialFile->RequiredMethods.begin(), materialFile->RequiredMethods.end(), MaterialFile::RequiredPredefinedMethodType::Light) != materialFile->RequiredMethods.end())
{
if (stage == 0)
{
maincode << material_light_vs;
}
else
{
maincode << material_light_ps;
}
}
maincode << Effekseer::Shader::GetLinearGammaFunctions() << std::endl;
auto baseCode = std::string(materialFile->GetGenericCode());
baseCode = Replace(baseCode, "$F1$", "float");
baseCode = Replace(baseCode, "$F2$", "vec2");
baseCode = Replace(baseCode, "$F3$", "vec3");
baseCode = Replace(baseCode, "$F4$", "vec4");
baseCode = Replace(baseCode, "$TIME$", "predefined_uniform.x");
baseCode = Replace(baseCode, "$EFFECTSCALE$", "predefined_uniform.y");
baseCode = Replace(baseCode, "$LOCALTIME$", "predefined_uniform.w");
baseCode = Replace(baseCode, "$UV$", "uv");
baseCode = Replace(baseCode, "$MOD", "mod");
// replace textures
for (int32_t i = 0; i < actualTextureCount; i++)
{
std::string prefix;
std::string suffix;
if (materialFile->GetTextureColorType(i) == Effekseer::TextureColorType::Color)
{
prefix = "ConvertFromSRGBTexture(";
suffix = ")";
}
auto textureIndex = materialFile->GetTextureIndex(i);
auto textureName = std::string(materialFile->GetTextureName(i));
std::string keyP = "$TEX_P" + std::to_string(textureIndex) + "$";
std::string keyS = "$TEX_S" + std::to_string(textureIndex) + "$";
if (stage == 0)
{
baseCode = Replace(baseCode, keyP, prefix + "TEX2D(" + textureName + ",GetUV(");
baseCode = Replace(baseCode, keyS, "), 0.0)" + suffix);
}
else
{
baseCode = Replace(baseCode, keyP, prefix + "TEX2D(" + textureName + ",GetUV(");
baseCode = Replace(baseCode, keyS, "))" + suffix);
}
}
// invalid texture
for (int32_t i = actualTextureCount; i < materialFile->GetTextureCount(); i++)
{
auto textureIndex = materialFile->GetTextureIndex(i);
auto textureName = std::string(materialFile->GetTextureName(i));
std::string keyP = "$TEX_P" + std::to_string(textureIndex) + "$";
std::string keyS = "$TEX_S" + std::to_string(textureIndex) + "$";
baseCode = Replace(baseCode, keyP, "vec4(");
baseCode = Replace(baseCode, keyS, ",0.0,1.0)");
}
ExportMain(maincode, materialFile, stage, isSprite, shaderType, baseCode, useUniformBlock);
if (stage == 0)
{
shaderData.CodeVS = maincode.str();
}
else
{
shaderData.CodePS = maincode.str();
}
}
// custom data
int32_t layoutOffset = 6;
int32_t pvLayoutOffset = 7;
if (materialFile->GetCustomData1Count() > 0)
{
if (isSprite)
{
shaderData.CodeVS = Replace(shaderData.CodeVS,
"//$C_IN1$",
"LAYOUT(" + std::to_string(layoutOffset) + ") " + "IN " +
GetType(materialFile->GetCustomData1Count()) + " atCustomData1;");
}
shaderData.CodeVS = Replace(shaderData.CodeVS,
"//$C_OUT1$",
"LAYOUT(" + std::to_string(pvLayoutOffset) + ") " + "OUT mediump " +
GetType(materialFile->GetCustomData1Count()) + " v_CustomData1;");
shaderData.CodePS = Replace(shaderData.CodePS,
"//$C_PIN1$",
"LAYOUT(" + std::to_string(pvLayoutOffset) + ") " + "IN mediump " +
GetType(materialFile->GetCustomData1Count()) + " v_CustomData1;");
layoutOffset += 1;
pvLayoutOffset += 1;
}
if (materialFile->GetCustomData2Count() > 0)
{
if (isSprite)
{
shaderData.CodeVS = Replace(shaderData.CodeVS,
"//$C_IN2$",
"LAYOUT(" + std::to_string(layoutOffset) + ") " + "IN " +
GetType(materialFile->GetCustomData2Count()) + " atCustomData2;");
}
shaderData.CodeVS = Replace(shaderData.CodeVS,
"//$C_OUT2$",
"LAYOUT(" + std::to_string(pvLayoutOffset) + ") " + "OUT mediump " +
GetType(materialFile->GetCustomData2Count()) + " v_CustomData2;");
shaderData.CodePS = Replace(shaderData.CodePS,
"//$C_PIN2$",
"LAYOUT(" + std::to_string(pvLayoutOffset) + ") " + "IN mediump " +
GetType(materialFile->GetCustomData2Count()) + " v_CustomData2;");
}
return shaderData;
}
} // namespace GLSL
} // namespace Effekseer