mirror of https://github.com/axmolengine/axmol.git
467 lines
17 KiB
C++
467 lines
17 KiB
C++
|
// SPDX-License-Identifier: Apache-2.0
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Copyright 2011-2021 Arm Limited
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
||
|
// use this file except in compliance with the License. You may obtain a copy
|
||
|
// of the License at:
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
// License for the specific language governing permissions and limitations
|
||
|
// under the License.
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
#if !defined(ASTCENC_DECOMPRESS_ONLY)
|
||
|
|
||
|
/**
|
||
|
* @brief Functions for angular-sum algorithm for weight alignment.
|
||
|
*
|
||
|
* This algorithm works as follows:
|
||
|
* - we compute a complex number P as (cos s*i, sin s*i) for each weight,
|
||
|
* where i is the input value and s is a scaling factor based on the spacing between the weights.
|
||
|
* - we then add together complex numbers for all the weights.
|
||
|
* - we then compute the length and angle of the resulting sum.
|
||
|
*
|
||
|
* This should produce the following results:
|
||
|
* - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
|
||
|
* - even distribution results in a vector of length 0.
|
||
|
* - all samples identical results in perfect alignment for every scaling.
|
||
|
*
|
||
|
* For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
|
||
|
* should then result in some scalings standing out as having particularly good alignment factors;
|
||
|
* we can use this to produce a set of candidate scale/shift values for various quantization levels;
|
||
|
* we should then actually try them and see what happens.
|
||
|
*/
|
||
|
|
||
|
#include "astcenc_internal.h"
|
||
|
#include "astcenc_vecmathlib.h"
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <cassert>
|
||
|
#include <cstring>
|
||
|
|
||
|
|
||
|
static constexpr unsigned int ANGULAR_STEPS { 40 };
|
||
|
|
||
|
// Store a reduced sin/cos table for 64 possible weight values; this causes slight quality loss
|
||
|
// compared to using sin() and cos() directly. Must be 2^N.
|
||
|
static constexpr unsigned int SINCOS_STEPS { 64 };
|
||
|
|
||
|
static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
|
||
|
"ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");
|
||
|
|
||
|
static unsigned int max_angular_steps_needed_for_quant_level[13];
|
||
|
|
||
|
// The next-to-last entry is supposed to have the value 33. This because the 32-weight mode leaves a
|
||
|
// double-sized hole in the middle of the weight space, so we are better off matching 33 weights.
|
||
|
static const unsigned int quantization_steps_for_level[13] = {
|
||
|
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 33, 36
|
||
|
};
|
||
|
|
||
|
alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
|
||
|
alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
|
||
|
|
||
|
/* See header for documentation. */
|
||
|
void prepare_angular_tables()
|
||
|
{
|
||
|
unsigned int max_angular_steps_needed_for_quant_steps[ANGULAR_STEPS + 1];
|
||
|
for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
|
||
|
{
|
||
|
float angle_step = (float)(i + 1);
|
||
|
|
||
|
for (unsigned int j = 0; j < SINCOS_STEPS; j++)
|
||
|
{
|
||
|
sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
|
||
|
cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
|
||
|
}
|
||
|
|
||
|
max_angular_steps_needed_for_quant_steps[i + 1] = astc::min(i + 1, ANGULAR_STEPS - 1);
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 0; i < 13; i++)
|
||
|
{
|
||
|
max_angular_steps_needed_for_quant_level[i] = max_angular_steps_needed_for_quant_steps[quantization_steps_for_level[i]];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Compute the angular alignment factors and offsets.
|
||
|
*
|
||
|
* @param sample_count The number of samples.
|
||
|
* @param samples The sample data.
|
||
|
* @param sample_weights The weight of each sample.
|
||
|
* @param max_angular_steps The maximum number of steps to be tested.
|
||
|
* @param[out] offsets The output angular offsets array.
|
||
|
*/
|
||
|
static void compute_angular_offsets(
|
||
|
unsigned int sample_count,
|
||
|
const float* samples,
|
||
|
const float* sample_weights,
|
||
|
unsigned int max_angular_steps,
|
||
|
float* offsets
|
||
|
) {
|
||
|
promise(sample_count > 0);
|
||
|
promise(max_angular_steps > 0);
|
||
|
|
||
|
alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS] { 0 };
|
||
|
|
||
|
// Precompute isample; arrays are always allocated 64 elements long
|
||
|
for (unsigned int i = 0; i < sample_count; i += ASTCENC_SIMD_WIDTH)
|
||
|
{
|
||
|
// Add 2^23 and interpreting bits extracts round-to-nearest int
|
||
|
vfloat sample = loada(samples + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
|
||
|
vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
|
||
|
storea(isample, isamplev + i);
|
||
|
}
|
||
|
|
||
|
// Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
|
||
|
vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
|
||
|
|
||
|
for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
|
||
|
{
|
||
|
vfloat anglesum_x = vfloat::zero();
|
||
|
vfloat anglesum_y = vfloat::zero();
|
||
|
|
||
|
for (unsigned int j = 0; j < sample_count; j++)
|
||
|
{
|
||
|
int isample = isamplev[j];
|
||
|
vfloat sample_weightv(sample_weights[j]);
|
||
|
anglesum_x += loada(cos_table[isample] + i) * sample_weightv;
|
||
|
anglesum_y += loada(sin_table[isample] + i) * sample_weightv;
|
||
|
}
|
||
|
|
||
|
vfloat angle = atan2(anglesum_y, anglesum_x);
|
||
|
vfloat ofs = angle * mult;
|
||
|
storea(ofs, offsets + i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief For a given step size compute the lowest and highest weight.
|
||
|
*
|
||
|
* Compute the lowest and highest weight that results from quantizing using the given stepsize and
|
||
|
* offset, and then compute the resulting error. The cut errors indicate the error that results from
|
||
|
* forcing samples that should have had one weight value one step up or down.
|
||
|
*
|
||
|
* @param sample_count The number of samples.
|
||
|
* @param samples The sample data.
|
||
|
* @param sample_weights The weight of each sample.
|
||
|
* @param max_angular_steps The maximum number of steps to be tested.
|
||
|
* @param max_quant_steps The maximum quantization level to be tested.
|
||
|
* @param offsets The angular offsets array.
|
||
|
* @param[out] lowest_weight Per angular step, the lowest weight.
|
||
|
* @param[out] weight_span Per angular step, the span between lowest and highest weight.
|
||
|
* @param[out] error Per angular step, the error.
|
||
|
* @param[out] cut_low_weight_error Per angular step, the low weight cut error.
|
||
|
* @param[out] cut_high_weight_error Per angular step, the high weight cut error.
|
||
|
*/
|
||
|
static void compute_lowest_and_highest_weight(
|
||
|
unsigned int sample_count,
|
||
|
const float* samples,
|
||
|
const float* sample_weights,
|
||
|
unsigned int max_angular_steps,
|
||
|
unsigned int max_quant_steps,
|
||
|
const float* offsets,
|
||
|
int* lowest_weight,
|
||
|
int* weight_span,
|
||
|
float* error,
|
||
|
float* cut_low_weight_error,
|
||
|
float* cut_high_weight_error
|
||
|
) {
|
||
|
promise(sample_count > 0);
|
||
|
promise(max_angular_steps > 0);
|
||
|
|
||
|
vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
|
||
|
|
||
|
// Arrays are ANGULAR_STEPS long, so always safe to run full vectors
|
||
|
for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
|
||
|
{
|
||
|
vint minidx(128);
|
||
|
vint maxidx(-128);
|
||
|
vfloat errval = vfloat::zero();
|
||
|
vfloat cut_low_weight_err = vfloat::zero();
|
||
|
vfloat cut_high_weight_err = vfloat::zero();
|
||
|
vfloat offset = loada(&offsets[sp]);
|
||
|
|
||
|
for (unsigned int j = 0; j < sample_count; ++j)
|
||
|
{
|
||
|
vfloat wt = load1(&sample_weights[j]);
|
||
|
vfloat sval = load1(&samples[j]) * rcp_stepsize - offset;
|
||
|
vfloat svalrte = round(sval);
|
||
|
vint idxv = float_to_int(svalrte);
|
||
|
vfloat dif = sval - svalrte;
|
||
|
vfloat dwt = dif * wt;
|
||
|
errval += dwt * dif;
|
||
|
|
||
|
// Reset tracker on min hit
|
||
|
vmask mask = idxv < minidx;
|
||
|
minidx = select(minidx, idxv, mask);
|
||
|
cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
|
||
|
|
||
|
// Accumulate on min hit
|
||
|
mask = idxv == minidx;
|
||
|
vfloat accum = cut_low_weight_err + wt - vfloat(2.0f) * dwt;
|
||
|
cut_low_weight_err = select(cut_low_weight_err, accum, mask);
|
||
|
|
||
|
// Reset tracker on max hit
|
||
|
mask = idxv > maxidx;
|
||
|
maxidx = select(maxidx, idxv, mask);
|
||
|
cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
|
||
|
|
||
|
// Accumulate on max hit
|
||
|
mask = idxv == maxidx;
|
||
|
accum = cut_high_weight_err + wt + vfloat(2.0f) * dwt;
|
||
|
cut_high_weight_err = select(cut_high_weight_err, accum, mask);
|
||
|
}
|
||
|
|
||
|
// Write out min weight and weight span; clamp span to a usable range
|
||
|
vint span = maxidx - minidx + vint(1);
|
||
|
span = min(span, vint(max_quant_steps + 3));
|
||
|
span = max(span, vint(2));
|
||
|
storea(minidx, &lowest_weight[sp]);
|
||
|
storea(span, &weight_span[sp]);
|
||
|
|
||
|
// The cut_(lowest/highest)_weight_error indicate the error that results from forcing
|
||
|
// samples that should have had the weight value one step (up/down).
|
||
|
vfloat ssize = 1.0f / rcp_stepsize;
|
||
|
vfloat errscale = ssize * ssize;
|
||
|
storea(errval * errscale, &error[sp]);
|
||
|
storea(cut_low_weight_err * errscale, &cut_low_weight_error[sp]);
|
||
|
storea(cut_high_weight_err * errscale, &cut_high_weight_error[sp]);
|
||
|
|
||
|
rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief The main function for the angular algorithm.
|
||
|
*
|
||
|
* @param sample_count The number of samples.
|
||
|
* @param samples The sample data.
|
||
|
* @param sample_weights The weight of each sample.
|
||
|
* @param max_quant_level The maximum quantization level to be tested.
|
||
|
* @param[out] low_value Per angular step, the lowest weight value.
|
||
|
* @param[out] high_value Per angular step, the highest weight value.
|
||
|
*/
|
||
|
static void compute_angular_endpoints_for_quant_levels(
|
||
|
unsigned int sample_count,
|
||
|
const float* samples,
|
||
|
const float* sample_weights,
|
||
|
unsigned int max_quant_level,
|
||
|
float low_value[12],
|
||
|
float high_value[12]
|
||
|
) {
|
||
|
unsigned int max_quant_steps = quantization_steps_for_level[max_quant_level];
|
||
|
|
||
|
alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS];
|
||
|
unsigned int max_angular_steps = max_angular_steps_needed_for_quant_level[max_quant_level];
|
||
|
compute_angular_offsets(sample_count, samples, sample_weights, max_angular_steps, angular_offsets);
|
||
|
|
||
|
alignas(ASTCENC_VECALIGN) int32_t lowest_weight[ANGULAR_STEPS];
|
||
|
alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS];
|
||
|
alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS];
|
||
|
alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS];
|
||
|
alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS];
|
||
|
|
||
|
compute_lowest_and_highest_weight(sample_count, samples, sample_weights,
|
||
|
max_angular_steps, max_quant_steps,
|
||
|
angular_offsets, lowest_weight, weight_span, error,
|
||
|
cut_low_weight_error, cut_high_weight_error);
|
||
|
|
||
|
// For each quantization level, find the best error terms. Use packed vectors so data-dependent
|
||
|
// branches can become selects. This involves some integer to float casts, but the values are
|
||
|
// small enough so they never round the wrong way.
|
||
|
vfloat4 best_results[40];
|
||
|
|
||
|
// Initialize the array to some safe defaults
|
||
|
promise(max_quant_steps > 0);
|
||
|
for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
|
||
|
{
|
||
|
// Lane<0> = Best error
|
||
|
// Lane<1> = Best scale; -1 indicates no solution found
|
||
|
// Lane<2> = Cut low weight
|
||
|
best_results[i] = vfloat4(1e30f, -1.0f, 0.0f, 0.0f);
|
||
|
}
|
||
|
|
||
|
promise(max_angular_steps > 0);
|
||
|
for (unsigned int i = 0; i < max_angular_steps; i++)
|
||
|
{
|
||
|
int idx_span = weight_span[i];
|
||
|
float error_cut_low = error[i] + cut_low_weight_error[i];
|
||
|
float error_cut_high = error[i] + cut_high_weight_error[i];
|
||
|
float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
|
||
|
|
||
|
vfloat4 best_result;
|
||
|
vfloat4 new_result;
|
||
|
|
||
|
// Check best error against record N
|
||
|
best_result = best_results[idx_span];
|
||
|
new_result = vfloat4(error[i], (float)i, 0.0f, 0.0f);
|
||
|
vmask4 mask1(best_result.lane<0>() > error[i]);
|
||
|
best_results[idx_span] = select(best_result, new_result, mask1);
|
||
|
|
||
|
// Check best error against record N-1 with both cut low and cut high
|
||
|
best_result = best_results[idx_span - 1];
|
||
|
|
||
|
new_result = vfloat4(error_cut_low, (float)i, 1.0f, 0.0f);
|
||
|
vmask4 mask2(best_result.lane<0>() > error_cut_low);
|
||
|
best_result = select(best_result, new_result, mask2);
|
||
|
|
||
|
new_result = vfloat4(error_cut_high, (float)i, 0.0f, 0.0f);
|
||
|
vmask4 mask3(best_result.lane<0>() > error_cut_high);
|
||
|
best_results[idx_span - 1] = select(best_result, new_result, mask3);
|
||
|
|
||
|
// Check best error against record N-2 with cut low high
|
||
|
best_result = best_results[idx_span - 2];
|
||
|
new_result = vfloat4(error_cut_low_high, (float)i, 1.0f, 0.0f);
|
||
|
vmask4 mask4(best_result.lane<0>() > error_cut_low_high);
|
||
|
best_results[idx_span - 2] = select(best_result, new_result, mask4);
|
||
|
}
|
||
|
|
||
|
// If we get a better error for lower sample count then use the lower sample count's error for
|
||
|
// the higher sample count as well.
|
||
|
for (unsigned int i = 3; i <= max_quant_steps; i++)
|
||
|
{
|
||
|
vfloat4 result = best_results[i];
|
||
|
vfloat4 prev_result = best_results[i - 1];
|
||
|
vmask4 mask(result.lane<0>() > prev_result.lane<0>());
|
||
|
best_results[i] = select(result, prev_result, mask);
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 0; i <= max_quant_level; i++)
|
||
|
{
|
||
|
unsigned int q = quantization_steps_for_level[i];
|
||
|
int bsi = (int)best_results[q].lane<1>();
|
||
|
|
||
|
// Did we find anything?
|
||
|
// TODO: Can we do better than bsi = 0 here. We should at least propagate an error?
|
||
|
#if !defined(NDEBUG)
|
||
|
if (bsi < 0)
|
||
|
{
|
||
|
printf("WARNING: Unable to find encoding within specified error limit\n");
|
||
|
bsi = 0;
|
||
|
}
|
||
|
else
|
||
|
bsi = astc::max(0, bsi);
|
||
|
#endif
|
||
|
|
||
|
float stepsize = 1.0f / (1.0f + (float)bsi);
|
||
|
int lwi = lowest_weight[bsi] + (int)best_results[q].lane<2>();
|
||
|
int hwi = lwi + q - 1;
|
||
|
|
||
|
float offset = angular_offsets[bsi] * stepsize;
|
||
|
low_value[i] = offset + static_cast<float>(lwi) * stepsize;
|
||
|
high_value[i] = offset + static_cast<float>(hwi) * stepsize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* See header for documentation. */
|
||
|
void compute_angular_endpoints_1plane(
|
||
|
bool only_always,
|
||
|
const block_size_descriptor& bsd,
|
||
|
const float* decimated_quantized_weights,
|
||
|
const float* decimated_weights,
|
||
|
float low_value[WEIGHTS_MAX_BLOCK_MODES],
|
||
|
float high_value[WEIGHTS_MAX_BLOCK_MODES]
|
||
|
) {
|
||
|
float low_values[WEIGHTS_MAX_DECIMATION_MODES][12];
|
||
|
float high_values[WEIGHTS_MAX_DECIMATION_MODES][12];
|
||
|
|
||
|
promise(bsd.decimation_mode_count > 0);
|
||
|
for (unsigned int i = 0; i < bsd.decimation_mode_count; i++)
|
||
|
{
|
||
|
const decimation_mode& dm = bsd.decimation_modes[i];
|
||
|
if (dm.maxprec_1plane < 0 || (only_always && !dm.percentile_always) || !dm.percentile_hit)
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
int sample_count = bsd.decimation_tables[i]->weight_count;
|
||
|
compute_angular_endpoints_for_quant_levels(
|
||
|
sample_count,
|
||
|
decimated_quantized_weights + i * BLOCK_MAX_WEIGHTS,
|
||
|
decimated_weights + i * BLOCK_MAX_WEIGHTS,
|
||
|
dm.maxprec_1plane, low_values[i], high_values[i]);
|
||
|
}
|
||
|
|
||
|
promise(bsd.block_mode_count > 0);
|
||
|
for (unsigned int i = 0; i < bsd.block_mode_count; ++i)
|
||
|
{
|
||
|
const block_mode& bm = bsd.block_modes[i];
|
||
|
if (bm.is_dual_plane || (only_always && !bm.percentile_always) || !bm.percentile_hit)
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
unsigned int quant_mode = bm.quant_mode;
|
||
|
unsigned int decim_mode = bm.decimation_mode;
|
||
|
|
||
|
low_value[i] = low_values[decim_mode][quant_mode];
|
||
|
high_value[i] = high_values[decim_mode][quant_mode];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* See header for documentation. */
|
||
|
void compute_angular_endpoints_2planes(
|
||
|
const block_size_descriptor& bsd,
|
||
|
const float* decimated_quantized_weights,
|
||
|
const float* decimated_weights,
|
||
|
float low_value1[WEIGHTS_MAX_BLOCK_MODES],
|
||
|
float high_value1[WEIGHTS_MAX_BLOCK_MODES],
|
||
|
float low_value2[WEIGHTS_MAX_BLOCK_MODES],
|
||
|
float high_value2[WEIGHTS_MAX_BLOCK_MODES]
|
||
|
) {
|
||
|
float low_values1[WEIGHTS_MAX_DECIMATION_MODES][12];
|
||
|
float high_values1[WEIGHTS_MAX_DECIMATION_MODES][12];
|
||
|
float low_values2[WEIGHTS_MAX_DECIMATION_MODES][12];
|
||
|
float high_values2[WEIGHTS_MAX_DECIMATION_MODES][12];
|
||
|
|
||
|
promise(bsd.decimation_mode_count > 0);
|
||
|
for (unsigned int i = 0; i < bsd.decimation_mode_count; i++)
|
||
|
{
|
||
|
const decimation_mode& dm = bsd.decimation_modes[i];
|
||
|
if (dm.maxprec_2planes < 0 || !dm.percentile_hit)
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
unsigned int sample_count = bsd.decimation_tables[i]->weight_count;
|
||
|
|
||
|
compute_angular_endpoints_for_quant_levels(
|
||
|
sample_count,
|
||
|
decimated_quantized_weights + 2 * i * BLOCK_MAX_WEIGHTS,
|
||
|
decimated_weights + 2 * i * BLOCK_MAX_WEIGHTS,
|
||
|
dm.maxprec_2planes, low_values1[i], high_values1[i]);
|
||
|
|
||
|
compute_angular_endpoints_for_quant_levels(
|
||
|
sample_count,
|
||
|
decimated_quantized_weights + (2 * i + 1) * BLOCK_MAX_WEIGHTS,
|
||
|
decimated_weights + (2 * i + 1) * BLOCK_MAX_WEIGHTS,
|
||
|
dm.maxprec_2planes, low_values2[i], high_values2[i]);
|
||
|
}
|
||
|
|
||
|
promise(bsd.block_mode_count > 0);
|
||
|
for (unsigned int i = 0; i < bsd.block_mode_count; ++i)
|
||
|
{
|
||
|
const block_mode& bm = bsd.block_modes[i];
|
||
|
if (!bm.is_dual_plane || !bm.percentile_hit)
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
unsigned int quant_mode = bm.quant_mode;
|
||
|
unsigned int decim_mode = bm.decimation_mode;
|
||
|
|
||
|
low_value1[i] = low_values1[decim_mode][quant_mode];
|
||
|
high_value1[i] = high_values1[decim_mode][quant_mode];
|
||
|
low_value2[i] = low_values2[decim_mode][quant_mode];
|
||
|
high_value2[i] = high_values2[decim_mode][quant_mode];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|