mirror of https://github.com/axmolengine/axmol.git
502 lines
13 KiB
C
502 lines
13 KiB
C
|
/*
|
||
|
** SSA IR (Intermediate Representation) emitter.
|
||
|
** Copyright (C) 2005-2013 Mike Pall. See Copyright Notice in luajit.h
|
||
|
*/
|
||
|
|
||
|
#define lj_ir_c
|
||
|
#define LUA_CORE
|
||
|
|
||
|
/* For pointers to libc/libm functions. */
|
||
|
#include <stdio.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
#include "lj_obj.h"
|
||
|
|
||
|
#if LJ_HASJIT
|
||
|
|
||
|
#include "lj_gc.h"
|
||
|
#include "lj_str.h"
|
||
|
#include "lj_tab.h"
|
||
|
#include "lj_ir.h"
|
||
|
#include "lj_jit.h"
|
||
|
#include "lj_ircall.h"
|
||
|
#include "lj_iropt.h"
|
||
|
#include "lj_trace.h"
|
||
|
#if LJ_HASFFI
|
||
|
#include "lj_ctype.h"
|
||
|
#include "lj_cdata.h"
|
||
|
#include "lj_carith.h"
|
||
|
#endif
|
||
|
#include "lj_vm.h"
|
||
|
#include "lj_strscan.h"
|
||
|
#include "lj_lib.h"
|
||
|
|
||
|
/* Some local macros to save typing. Undef'd at the end. */
|
||
|
#define IR(ref) (&J->cur.ir[(ref)])
|
||
|
#define fins (&J->fold.ins)
|
||
|
|
||
|
/* Pass IR on to next optimization in chain (FOLD). */
|
||
|
#define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
|
||
|
|
||
|
/* -- IR tables ----------------------------------------------------------- */
|
||
|
|
||
|
/* IR instruction modes. */
|
||
|
LJ_DATADEF const uint8_t lj_ir_mode[IR__MAX+1] = {
|
||
|
IRDEF(IRMODE)
|
||
|
0
|
||
|
};
|
||
|
|
||
|
/* IR type sizes. */
|
||
|
LJ_DATADEF const uint8_t lj_ir_type_size[IRT__MAX+1] = {
|
||
|
#define IRTSIZE(name, size) size,
|
||
|
IRTDEF(IRTSIZE)
|
||
|
#undef IRTSIZE
|
||
|
0
|
||
|
};
|
||
|
|
||
|
/* C call info for CALL* instructions. */
|
||
|
LJ_DATADEF const CCallInfo lj_ir_callinfo[] = {
|
||
|
#define IRCALLCI(cond, name, nargs, kind, type, flags) \
|
||
|
{ (ASMFunction)IRCALLCOND_##cond(name), \
|
||
|
(nargs)|(CCI_CALL_##kind)|(IRT_##type<<CCI_OTSHIFT)|(flags) },
|
||
|
IRCALLDEF(IRCALLCI)
|
||
|
#undef IRCALLCI
|
||
|
{ NULL, 0 }
|
||
|
};
|
||
|
|
||
|
/* -- IR emitter ---------------------------------------------------------- */
|
||
|
|
||
|
/* Grow IR buffer at the top. */
|
||
|
void LJ_FASTCALL lj_ir_growtop(jit_State *J)
|
||
|
{
|
||
|
IRIns *baseir = J->irbuf + J->irbotlim;
|
||
|
MSize szins = J->irtoplim - J->irbotlim;
|
||
|
if (szins) {
|
||
|
baseir = (IRIns *)lj_mem_realloc(J->L, baseir, szins*sizeof(IRIns),
|
||
|
2*szins*sizeof(IRIns));
|
||
|
J->irtoplim = J->irbotlim + 2*szins;
|
||
|
} else {
|
||
|
baseir = (IRIns *)lj_mem_realloc(J->L, NULL, 0, LJ_MIN_IRSZ*sizeof(IRIns));
|
||
|
J->irbotlim = REF_BASE - LJ_MIN_IRSZ/4;
|
||
|
J->irtoplim = J->irbotlim + LJ_MIN_IRSZ;
|
||
|
}
|
||
|
J->cur.ir = J->irbuf = baseir - J->irbotlim;
|
||
|
}
|
||
|
|
||
|
/* Grow IR buffer at the bottom or shift it up. */
|
||
|
static void lj_ir_growbot(jit_State *J)
|
||
|
{
|
||
|
IRIns *baseir = J->irbuf + J->irbotlim;
|
||
|
MSize szins = J->irtoplim - J->irbotlim;
|
||
|
lua_assert(szins != 0);
|
||
|
lua_assert(J->cur.nk == J->irbotlim);
|
||
|
if (J->cur.nins + (szins >> 1) < J->irtoplim) {
|
||
|
/* More than half of the buffer is free on top: shift up by a quarter. */
|
||
|
MSize ofs = szins >> 2;
|
||
|
memmove(baseir + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns));
|
||
|
J->irbotlim -= ofs;
|
||
|
J->irtoplim -= ofs;
|
||
|
J->cur.ir = J->irbuf = baseir - J->irbotlim;
|
||
|
} else {
|
||
|
/* Double the buffer size, but split the growth amongst top/bottom. */
|
||
|
IRIns *newbase = lj_mem_newt(J->L, 2*szins*sizeof(IRIns), IRIns);
|
||
|
MSize ofs = szins >= 256 ? 128 : (szins >> 1); /* Limit bottom growth. */
|
||
|
memcpy(newbase + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns));
|
||
|
lj_mem_free(G(J->L), baseir, szins*sizeof(IRIns));
|
||
|
J->irbotlim -= ofs;
|
||
|
J->irtoplim = J->irbotlim + 2*szins;
|
||
|
J->cur.ir = J->irbuf = newbase - J->irbotlim;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Emit IR without any optimizations. */
|
||
|
TRef LJ_FASTCALL lj_ir_emit(jit_State *J)
|
||
|
{
|
||
|
IRRef ref = lj_ir_nextins(J);
|
||
|
IRIns *ir = IR(ref);
|
||
|
IROp op = fins->o;
|
||
|
ir->prev = J->chain[op];
|
||
|
J->chain[op] = (IRRef1)ref;
|
||
|
ir->o = op;
|
||
|
ir->op1 = fins->op1;
|
||
|
ir->op2 = fins->op2;
|
||
|
J->guardemit.irt |= fins->t.irt;
|
||
|
return TREF(ref, irt_t((ir->t = fins->t)));
|
||
|
}
|
||
|
|
||
|
/* Emit call to a C function. */
|
||
|
TRef lj_ir_call(jit_State *J, IRCallID id, ...)
|
||
|
{
|
||
|
const CCallInfo *ci = &lj_ir_callinfo[id];
|
||
|
uint32_t n = CCI_NARGS(ci);
|
||
|
TRef tr = TREF_NIL;
|
||
|
va_list argp;
|
||
|
va_start(argp, id);
|
||
|
if ((ci->flags & CCI_L)) n--;
|
||
|
if (n > 0)
|
||
|
tr = va_arg(argp, IRRef);
|
||
|
while (n-- > 1)
|
||
|
tr = emitir(IRT(IR_CARG, IRT_NIL), tr, va_arg(argp, IRRef));
|
||
|
va_end(argp);
|
||
|
if (CCI_OP(ci) == IR_CALLS)
|
||
|
J->needsnap = 1; /* Need snapshot after call with side effect. */
|
||
|
return emitir(CCI_OPTYPE(ci), tr, id);
|
||
|
}
|
||
|
|
||
|
/* -- Interning of constants ---------------------------------------------- */
|
||
|
|
||
|
/*
|
||
|
** IR instructions for constants are kept between J->cur.nk >= ref < REF_BIAS.
|
||
|
** They are chained like all other instructions, but grow downwards.
|
||
|
** The are interned (like strings in the VM) to facilitate reference
|
||
|
** comparisons. The same constant must get the same reference.
|
||
|
*/
|
||
|
|
||
|
/* Get ref of next IR constant and optionally grow IR.
|
||
|
** Note: this may invalidate all IRIns *!
|
||
|
*/
|
||
|
static LJ_AINLINE IRRef ir_nextk(jit_State *J)
|
||
|
{
|
||
|
IRRef ref = J->cur.nk;
|
||
|
if (LJ_UNLIKELY(ref <= J->irbotlim)) lj_ir_growbot(J);
|
||
|
J->cur.nk = --ref;
|
||
|
return ref;
|
||
|
}
|
||
|
|
||
|
/* Intern int32_t constant. */
|
||
|
TRef LJ_FASTCALL lj_ir_kint(jit_State *J, int32_t k)
|
||
|
{
|
||
|
IRIns *ir, *cir = J->cur.ir;
|
||
|
IRRef ref;
|
||
|
for (ref = J->chain[IR_KINT]; ref; ref = cir[ref].prev)
|
||
|
if (cir[ref].i == k)
|
||
|
goto found;
|
||
|
ref = ir_nextk(J);
|
||
|
ir = IR(ref);
|
||
|
ir->i = k;
|
||
|
ir->t.irt = IRT_INT;
|
||
|
ir->o = IR_KINT;
|
||
|
ir->prev = J->chain[IR_KINT];
|
||
|
J->chain[IR_KINT] = (IRRef1)ref;
|
||
|
found:
|
||
|
return TREF(ref, IRT_INT);
|
||
|
}
|
||
|
|
||
|
/* The MRef inside the KNUM/KINT64 IR instructions holds the address of the
|
||
|
** 64 bit constant. The constants themselves are stored in a chained array
|
||
|
** and shared across traces.
|
||
|
**
|
||
|
** Rationale for choosing this data structure:
|
||
|
** - The address of the constants is embedded in the generated machine code
|
||
|
** and must never move. A resizable array or hash table wouldn't work.
|
||
|
** - Most apps need very few non-32 bit integer constants (less than a dozen).
|
||
|
** - Linear search is hard to beat in terms of speed and low complexity.
|
||
|
*/
|
||
|
typedef struct K64Array {
|
||
|
MRef next; /* Pointer to next list. */
|
||
|
MSize numk; /* Number of used elements in this array. */
|
||
|
TValue k[LJ_MIN_K64SZ]; /* Array of constants. */
|
||
|
} K64Array;
|
||
|
|
||
|
/* Free all chained arrays. */
|
||
|
void lj_ir_k64_freeall(jit_State *J)
|
||
|
{
|
||
|
K64Array *k;
|
||
|
for (k = mref(J->k64, K64Array); k; ) {
|
||
|
K64Array *next = mref(k->next, K64Array);
|
||
|
lj_mem_free(J2G(J), k, sizeof(K64Array));
|
||
|
k = next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Find 64 bit constant in chained array or add it. */
|
||
|
cTValue *lj_ir_k64_find(jit_State *J, uint64_t u64)
|
||
|
{
|
||
|
K64Array *k, *kp = NULL;
|
||
|
TValue *ntv;
|
||
|
MSize idx;
|
||
|
/* Search for the constant in the whole chain of arrays. */
|
||
|
for (k = mref(J->k64, K64Array); k; k = mref(k->next, K64Array)) {
|
||
|
kp = k; /* Remember previous element in list. */
|
||
|
for (idx = 0; idx < k->numk; idx++) { /* Search one array. */
|
||
|
TValue *tv = &k->k[idx];
|
||
|
if (tv->u64 == u64) /* Needed for +-0/NaN/absmask. */
|
||
|
return tv;
|
||
|
}
|
||
|
}
|
||
|
/* Constant was not found, need to add it. */
|
||
|
if (!(kp && kp->numk < LJ_MIN_K64SZ)) { /* Allocate a new array. */
|
||
|
K64Array *kn = lj_mem_newt(J->L, sizeof(K64Array), K64Array);
|
||
|
setmref(kn->next, NULL);
|
||
|
kn->numk = 0;
|
||
|
if (kp)
|
||
|
setmref(kp->next, kn); /* Chain to the end of the list. */
|
||
|
else
|
||
|
setmref(J->k64, kn); /* Link first array. */
|
||
|
kp = kn;
|
||
|
}
|
||
|
ntv = &kp->k[kp->numk++]; /* Add to current array. */
|
||
|
ntv->u64 = u64;
|
||
|
return ntv;
|
||
|
}
|
||
|
|
||
|
/* Intern 64 bit constant, given by its address. */
|
||
|
TRef lj_ir_k64(jit_State *J, IROp op, cTValue *tv)
|
||
|
{
|
||
|
IRIns *ir, *cir = J->cur.ir;
|
||
|
IRRef ref;
|
||
|
IRType t = op == IR_KNUM ? IRT_NUM : IRT_I64;
|
||
|
for (ref = J->chain[op]; ref; ref = cir[ref].prev)
|
||
|
if (ir_k64(&cir[ref]) == tv)
|
||
|
goto found;
|
||
|
ref = ir_nextk(J);
|
||
|
ir = IR(ref);
|
||
|
lua_assert(checkptr32(tv));
|
||
|
setmref(ir->ptr, tv);
|
||
|
ir->t.irt = t;
|
||
|
ir->o = op;
|
||
|
ir->prev = J->chain[op];
|
||
|
J->chain[op] = (IRRef1)ref;
|
||
|
found:
|
||
|
return TREF(ref, t);
|
||
|
}
|
||
|
|
||
|
/* Intern FP constant, given by its 64 bit pattern. */
|
||
|
TRef lj_ir_knum_u64(jit_State *J, uint64_t u64)
|
||
|
{
|
||
|
return lj_ir_k64(J, IR_KNUM, lj_ir_k64_find(J, u64));
|
||
|
}
|
||
|
|
||
|
/* Intern 64 bit integer constant. */
|
||
|
TRef lj_ir_kint64(jit_State *J, uint64_t u64)
|
||
|
{
|
||
|
return lj_ir_k64(J, IR_KINT64, lj_ir_k64_find(J, u64));
|
||
|
}
|
||
|
|
||
|
/* Check whether a number is int and return it. -0 is NOT considered an int. */
|
||
|
static int numistrueint(lua_Number n, int32_t *kp)
|
||
|
{
|
||
|
int32_t k = lj_num2int(n);
|
||
|
if (n == (lua_Number)k) {
|
||
|
if (kp) *kp = k;
|
||
|
if (k == 0) { /* Special check for -0. */
|
||
|
TValue tv;
|
||
|
setnumV(&tv, n);
|
||
|
if (tv.u32.hi != 0)
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Intern number as int32_t constant if possible, otherwise as FP constant. */
|
||
|
TRef lj_ir_knumint(jit_State *J, lua_Number n)
|
||
|
{
|
||
|
int32_t k;
|
||
|
if (numistrueint(n, &k))
|
||
|
return lj_ir_kint(J, k);
|
||
|
else
|
||
|
return lj_ir_knum(J, n);
|
||
|
}
|
||
|
|
||
|
/* Intern GC object "constant". */
|
||
|
TRef lj_ir_kgc(jit_State *J, GCobj *o, IRType t)
|
||
|
{
|
||
|
IRIns *ir, *cir = J->cur.ir;
|
||
|
IRRef ref;
|
||
|
lua_assert(!isdead(J2G(J), o));
|
||
|
for (ref = J->chain[IR_KGC]; ref; ref = cir[ref].prev)
|
||
|
if (ir_kgc(&cir[ref]) == o)
|
||
|
goto found;
|
||
|
ref = ir_nextk(J);
|
||
|
ir = IR(ref);
|
||
|
/* NOBARRIER: Current trace is a GC root. */
|
||
|
setgcref(ir->gcr, o);
|
||
|
ir->t.irt = (uint8_t)t;
|
||
|
ir->o = IR_KGC;
|
||
|
ir->prev = J->chain[IR_KGC];
|
||
|
J->chain[IR_KGC] = (IRRef1)ref;
|
||
|
found:
|
||
|
return TREF(ref, t);
|
||
|
}
|
||
|
|
||
|
/* Intern 32 bit pointer constant. */
|
||
|
TRef lj_ir_kptr_(jit_State *J, IROp op, void *ptr)
|
||
|
{
|
||
|
IRIns *ir, *cir = J->cur.ir;
|
||
|
IRRef ref;
|
||
|
lua_assert((void *)(intptr_t)i32ptr(ptr) == ptr);
|
||
|
for (ref = J->chain[op]; ref; ref = cir[ref].prev)
|
||
|
if (mref(cir[ref].ptr, void) == ptr)
|
||
|
goto found;
|
||
|
ref = ir_nextk(J);
|
||
|
ir = IR(ref);
|
||
|
setmref(ir->ptr, ptr);
|
||
|
ir->t.irt = IRT_P32;
|
||
|
ir->o = op;
|
||
|
ir->prev = J->chain[op];
|
||
|
J->chain[op] = (IRRef1)ref;
|
||
|
found:
|
||
|
return TREF(ref, IRT_P32);
|
||
|
}
|
||
|
|
||
|
/* Intern typed NULL constant. */
|
||
|
TRef lj_ir_knull(jit_State *J, IRType t)
|
||
|
{
|
||
|
IRIns *ir, *cir = J->cur.ir;
|
||
|
IRRef ref;
|
||
|
for (ref = J->chain[IR_KNULL]; ref; ref = cir[ref].prev)
|
||
|
if (irt_t(cir[ref].t) == t)
|
||
|
goto found;
|
||
|
ref = ir_nextk(J);
|
||
|
ir = IR(ref);
|
||
|
ir->i = 0;
|
||
|
ir->t.irt = (uint8_t)t;
|
||
|
ir->o = IR_KNULL;
|
||
|
ir->prev = J->chain[IR_KNULL];
|
||
|
J->chain[IR_KNULL] = (IRRef1)ref;
|
||
|
found:
|
||
|
return TREF(ref, t);
|
||
|
}
|
||
|
|
||
|
/* Intern key slot. */
|
||
|
TRef lj_ir_kslot(jit_State *J, TRef key, IRRef slot)
|
||
|
{
|
||
|
IRIns *ir, *cir = J->cur.ir;
|
||
|
IRRef2 op12 = IRREF2((IRRef1)key, (IRRef1)slot);
|
||
|
IRRef ref;
|
||
|
/* Const part is not touched by CSE/DCE, so 0-65535 is ok for IRMlit here. */
|
||
|
lua_assert(tref_isk(key) && slot == (IRRef)(IRRef1)slot);
|
||
|
for (ref = J->chain[IR_KSLOT]; ref; ref = cir[ref].prev)
|
||
|
if (cir[ref].op12 == op12)
|
||
|
goto found;
|
||
|
ref = ir_nextk(J);
|
||
|
ir = IR(ref);
|
||
|
ir->op12 = op12;
|
||
|
ir->t.irt = IRT_P32;
|
||
|
ir->o = IR_KSLOT;
|
||
|
ir->prev = J->chain[IR_KSLOT];
|
||
|
J->chain[IR_KSLOT] = (IRRef1)ref;
|
||
|
found:
|
||
|
return TREF(ref, IRT_P32);
|
||
|
}
|
||
|
|
||
|
/* -- Access to IR constants ---------------------------------------------- */
|
||
|
|
||
|
/* Copy value of IR constant. */
|
||
|
void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir)
|
||
|
{
|
||
|
UNUSED(L);
|
||
|
lua_assert(ir->o != IR_KSLOT); /* Common mistake. */
|
||
|
switch (ir->o) {
|
||
|
case IR_KPRI: setitype(tv, irt_toitype(ir->t)); break;
|
||
|
case IR_KINT: setintV(tv, ir->i); break;
|
||
|
case IR_KGC: setgcV(L, tv, ir_kgc(ir), irt_toitype(ir->t)); break;
|
||
|
case IR_KPTR: case IR_KKPTR: case IR_KNULL:
|
||
|
setlightudV(tv, mref(ir->ptr, void));
|
||
|
break;
|
||
|
case IR_KNUM: setnumV(tv, ir_knum(ir)->n); break;
|
||
|
#if LJ_HASFFI
|
||
|
case IR_KINT64: {
|
||
|
GCcdata *cd = lj_cdata_new_(L, CTID_INT64, 8);
|
||
|
*(uint64_t *)cdataptr(cd) = ir_kint64(ir)->u64;
|
||
|
setcdataV(L, tv, cd);
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
default: lua_assert(0); break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* -- Convert IR operand types -------------------------------------------- */
|
||
|
|
||
|
/* Convert from string to number. */
|
||
|
TRef LJ_FASTCALL lj_ir_tonumber(jit_State *J, TRef tr)
|
||
|
{
|
||
|
if (!tref_isnumber(tr)) {
|
||
|
if (tref_isstr(tr))
|
||
|
tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
|
||
|
else
|
||
|
lj_trace_err(J, LJ_TRERR_BADTYPE);
|
||
|
}
|
||
|
return tr;
|
||
|
}
|
||
|
|
||
|
/* Convert from integer or string to number. */
|
||
|
TRef LJ_FASTCALL lj_ir_tonum(jit_State *J, TRef tr)
|
||
|
{
|
||
|
if (!tref_isnum(tr)) {
|
||
|
if (tref_isinteger(tr))
|
||
|
tr = emitir(IRTN(IR_CONV), tr, IRCONV_NUM_INT);
|
||
|
else if (tref_isstr(tr))
|
||
|
tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
|
||
|
else
|
||
|
lj_trace_err(J, LJ_TRERR_BADTYPE);
|
||
|
}
|
||
|
return tr;
|
||
|
}
|
||
|
|
||
|
/* Convert from integer or number to string. */
|
||
|
TRef LJ_FASTCALL lj_ir_tostr(jit_State *J, TRef tr)
|
||
|
{
|
||
|
if (!tref_isstr(tr)) {
|
||
|
if (!tref_isnumber(tr))
|
||
|
lj_trace_err(J, LJ_TRERR_BADTYPE);
|
||
|
tr = emitir(IRT(IR_TOSTR, IRT_STR), tr, 0);
|
||
|
}
|
||
|
return tr;
|
||
|
}
|
||
|
|
||
|
/* -- Miscellaneous IR ops ------------------------------------------------ */
|
||
|
|
||
|
/* Evaluate numeric comparison. */
|
||
|
int lj_ir_numcmp(lua_Number a, lua_Number b, IROp op)
|
||
|
{
|
||
|
switch (op) {
|
||
|
case IR_EQ: return (a == b);
|
||
|
case IR_NE: return (a != b);
|
||
|
case IR_LT: return (a < b);
|
||
|
case IR_GE: return (a >= b);
|
||
|
case IR_LE: return (a <= b);
|
||
|
case IR_GT: return (a > b);
|
||
|
case IR_ULT: return !(a >= b);
|
||
|
case IR_UGE: return !(a < b);
|
||
|
case IR_ULE: return !(a > b);
|
||
|
case IR_UGT: return !(a <= b);
|
||
|
default: lua_assert(0); return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Evaluate string comparison. */
|
||
|
int lj_ir_strcmp(GCstr *a, GCstr *b, IROp op)
|
||
|
{
|
||
|
int res = lj_str_cmp(a, b);
|
||
|
switch (op) {
|
||
|
case IR_LT: return (res < 0);
|
||
|
case IR_GE: return (res >= 0);
|
||
|
case IR_LE: return (res <= 0);
|
||
|
case IR_GT: return (res > 0);
|
||
|
default: lua_assert(0); return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Rollback IR to previous state. */
|
||
|
void lj_ir_rollback(jit_State *J, IRRef ref)
|
||
|
{
|
||
|
IRRef nins = J->cur.nins;
|
||
|
while (nins > ref) {
|
||
|
IRIns *ir;
|
||
|
nins--;
|
||
|
ir = IR(nins);
|
||
|
J->chain[ir->o] = ir->prev;
|
||
|
}
|
||
|
J->cur.nins = nins;
|
||
|
}
|
||
|
|
||
|
#undef IR
|
||
|
#undef fins
|
||
|
#undef emitir
|
||
|
|
||
|
#endif
|