axmol/thirdparty/openal/alc/backends/coreaudio.cpp

933 lines
32 KiB
C++
Raw Normal View History

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
2021-05-14 10:15:42 +08:00
#include "coreaudio.h"
#include <inttypes.h>
2021-05-14 10:15:42 +08:00
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
2021-05-14 10:15:42 +08:00
#include <unistd.h>
#include <cmath>
#include <memory>
#include <string>
2021-05-14 10:15:42 +08:00
#include "alnumeric.h"
#include "core/converter.h"
#include "core/device.h"
#include "core/logging.h"
2021-05-14 10:15:42 +08:00
#include "ringbuffer.h"
#include <AudioUnit/AudioUnit.h>
#include <AudioToolbox/AudioToolbox.h>
namespace {
2022-04-25 12:02:45 +08:00
#if TARGET_OS_IOS || TARGET_OS_TV
#define CAN_ENUMERATE 0
#else
#define CAN_ENUMERATE 1
#endif
constexpr auto OutputElement = 0;
constexpr auto InputElement = 1;
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
struct DeviceEntry {
AudioDeviceID mId;
std::string mName;
};
std::vector<DeviceEntry> PlaybackList;
std::vector<DeviceEntry> CaptureList;
OSStatus GetHwProperty(AudioHardwarePropertyID propId, UInt32 dataSize, void *propData)
{
const AudioObjectPropertyAddress addr{propId, kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster};
return AudioObjectGetPropertyData(kAudioObjectSystemObject, &addr, 0, nullptr, &dataSize,
propData);
}
OSStatus GetHwPropertySize(AudioHardwarePropertyID propId, UInt32 *outSize)
{
const AudioObjectPropertyAddress addr{propId, kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster};
return AudioObjectGetPropertyDataSize(kAudioObjectSystemObject, &addr, 0, nullptr, outSize);
}
OSStatus GetDevProperty(AudioDeviceID devId, AudioDevicePropertyID propId, bool isCapture,
UInt32 elem, UInt32 dataSize, void *propData)
{
static const AudioObjectPropertyScope scopes[2]{kAudioDevicePropertyScopeOutput,
kAudioDevicePropertyScopeInput};
const AudioObjectPropertyAddress addr{propId, scopes[isCapture], elem};
return AudioObjectGetPropertyData(devId, &addr, 0, nullptr, &dataSize, propData);
}
OSStatus GetDevPropertySize(AudioDeviceID devId, AudioDevicePropertyID inPropertyID,
bool isCapture, UInt32 elem, UInt32 *outSize)
{
static const AudioObjectPropertyScope scopes[2]{kAudioDevicePropertyScopeOutput,
kAudioDevicePropertyScopeInput};
const AudioObjectPropertyAddress addr{inPropertyID, scopes[isCapture], elem};
return AudioObjectGetPropertyDataSize(devId, &addr, 0, nullptr, outSize);
}
std::string GetDeviceName(AudioDeviceID devId)
{
std::string devname;
CFStringRef nameRef;
/* Try to get the device name as a CFString, for Unicode name support. */
OSStatus err{GetDevProperty(devId, kAudioDevicePropertyDeviceNameCFString, false, 0,
sizeof(nameRef), &nameRef)};
if(err == noErr)
{
const CFIndex propSize{CFStringGetMaximumSizeForEncoding(CFStringGetLength(nameRef),
kCFStringEncodingUTF8)};
devname.resize(static_cast<size_t>(propSize)+1, '\0');
CFStringGetCString(nameRef, &devname[0], propSize+1, kCFStringEncodingUTF8);
CFRelease(nameRef);
}
else
{
/* If that failed, just get the C string. Hopefully there's nothing bad
* with this.
*/
UInt32 propSize{};
if(GetDevPropertySize(devId, kAudioDevicePropertyDeviceName, false, 0, &propSize))
return devname;
devname.resize(propSize+1, '\0');
if(GetDevProperty(devId, kAudioDevicePropertyDeviceName, false, 0, propSize, &devname[0]))
{
devname.clear();
return devname;
}
}
/* Clear extraneous nul chars that may have been written with the name
* string, and return it.
*/
while(!devname.back())
devname.pop_back();
return devname;
}
UInt32 GetDeviceChannelCount(AudioDeviceID devId, bool isCapture)
{
UInt32 propSize{};
auto err = GetDevPropertySize(devId, kAudioDevicePropertyStreamConfiguration, isCapture, 0,
&propSize);
if(err)
{
ERR("kAudioDevicePropertyStreamConfiguration size query failed: %u\n", err);
2022-04-25 12:02:45 +08:00
return 0;
}
auto buflist_data = std::make_unique<char[]>(propSize);
auto *buflist = reinterpret_cast<AudioBufferList*>(buflist_data.get());
err = GetDevProperty(devId, kAudioDevicePropertyStreamConfiguration, isCapture, 0, propSize,
buflist);
if(err)
{
ERR("kAudioDevicePropertyStreamConfiguration query failed: %u\n", err);
2022-04-25 12:02:45 +08:00
return 0;
}
UInt32 numChannels{0};
for(size_t i{0};i < buflist->mNumberBuffers;++i)
numChannels += buflist->mBuffers[i].mNumberChannels;
return numChannels;
}
void EnumerateDevices(std::vector<DeviceEntry> &list, bool isCapture)
{
UInt32 propSize{};
if(auto err = GetHwPropertySize(kAudioHardwarePropertyDevices, &propSize))
{
ERR("Failed to get device list size: %u\n", err);
return;
}
auto devIds = std::vector<AudioDeviceID>(propSize/sizeof(AudioDeviceID), kAudioDeviceUnknown);
if(auto err = GetHwProperty(kAudioHardwarePropertyDevices, propSize, devIds.data()))
{
ERR("Failed to get device list: %u\n", err);
2022-04-25 12:02:45 +08:00
return;
}
std::vector<DeviceEntry> newdevs;
newdevs.reserve(devIds.size());
AudioDeviceID defaultId{kAudioDeviceUnknown};
GetHwProperty(isCapture ? kAudioHardwarePropertyDefaultInputDevice :
kAudioHardwarePropertyDefaultOutputDevice, sizeof(defaultId), &defaultId);
if(defaultId != kAudioDeviceUnknown)
{
newdevs.emplace_back(DeviceEntry{defaultId, GetDeviceName(defaultId)});
const auto &entry = newdevs.back();
TRACE("Got device: %s = ID %u\n", entry.mName.c_str(), entry.mId);
}
for(const AudioDeviceID devId : devIds)
{
if(devId == kAudioDeviceUnknown)
continue;
auto match_devid = [devId](const DeviceEntry &entry) noexcept -> bool
{ return entry.mId == devId; };
auto match = std::find_if(newdevs.cbegin(), newdevs.cend(), match_devid);
if(match != newdevs.cend()) continue;
auto numChannels = GetDeviceChannelCount(devId, isCapture);
if(numChannels > 0)
{
newdevs.emplace_back(DeviceEntry{devId, GetDeviceName(devId)});
const auto &entry = newdevs.back();
TRACE("Got device: %s = ID %u\n", entry.mName.c_str(), entry.mId);
}
}
if(newdevs.size() > 1)
{
/* Rename entries that have matching names, by appending '#2', '#3',
* etc, as needed.
*/
for(auto curitem = newdevs.begin()+1;curitem != newdevs.end();++curitem)
{
auto check_match = [curitem](const DeviceEntry &entry) -> bool
{ return entry.mName == curitem->mName; };
if(std::find_if(newdevs.begin(), curitem, check_match) != curitem)
{
std::string name{curitem->mName};
size_t count{1};
auto check_name = [&name](const DeviceEntry &entry) -> bool
{ return entry.mName == name; };
do {
name = curitem->mName;
name += " #";
name += std::to_string(++count);
} while(std::find_if(newdevs.begin(), curitem, check_name) != curitem);
curitem->mName = std::move(name);
}
}
}
newdevs.shrink_to_fit();
newdevs.swap(list);
}
#else
static constexpr char ca_device[] = "CoreAudio Default";
#endif
struct CoreAudioPlayback final : public BackendBase {
2021-05-14 10:15:42 +08:00
CoreAudioPlayback(DeviceBase *device) noexcept : BackendBase{device} { }
~CoreAudioPlayback() override;
OSStatus MixerProc(AudioUnitRenderActionFlags *ioActionFlags,
const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames,
AudioBufferList *ioData) noexcept;
static OSStatus MixerProcC(void *inRefCon, AudioUnitRenderActionFlags *ioActionFlags,
const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames,
AudioBufferList *ioData) noexcept
{
return static_cast<CoreAudioPlayback*>(inRefCon)->MixerProc(ioActionFlags, inTimeStamp,
inBusNumber, inNumberFrames, ioData);
}
void open(const char *name) override;
bool reset() override;
void start() override;
void stop() override;
AudioUnit mAudioUnit{};
uint mFrameSize{0u};
AudioStreamBasicDescription mFormat{}; // This is the OpenAL format as a CoreAudio ASBD
DEF_NEWDEL(CoreAudioPlayback)
};
CoreAudioPlayback::~CoreAudioPlayback()
{
AudioUnitUninitialize(mAudioUnit);
AudioComponentInstanceDispose(mAudioUnit);
}
OSStatus CoreAudioPlayback::MixerProc(AudioUnitRenderActionFlags*, const AudioTimeStamp*, UInt32,
UInt32, AudioBufferList *ioData) noexcept
{
for(size_t i{0};i < ioData->mNumberBuffers;++i)
{
auto &buffer = ioData->mBuffers[i];
mDevice->renderSamples(buffer.mData, buffer.mDataByteSize/mFrameSize,
buffer.mNumberChannels);
}
return noErr;
}
void CoreAudioPlayback::open(const char *name)
{
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
AudioDeviceID audioDevice{kAudioDeviceUnknown};
if(!name)
GetHwProperty(kAudioHardwarePropertyDefaultOutputDevice, sizeof(audioDevice),
&audioDevice);
else
{
if(PlaybackList.empty())
EnumerateDevices(PlaybackList, false);
auto find_name = [name](const DeviceEntry &entry) -> bool
{ return entry.mName == name; };
auto devmatch = std::find_if(PlaybackList.cbegin(), PlaybackList.cend(), find_name);
if(devmatch == PlaybackList.cend())
throw al::backend_exception{al::backend_error::NoDevice,
"Device name \"%s\" not found", name};
audioDevice = devmatch->mId;
}
#else
if(!name)
name = ca_device;
else if(strcmp(name, ca_device) != 0)
throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found",
name};
2022-04-25 12:02:45 +08:00
#endif
/* open the default output unit */
AudioComponentDescription desc{};
desc.componentType = kAudioUnitType_Output;
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
desc.componentSubType = (audioDevice == kAudioDeviceUnknown) ?
kAudioUnitSubType_DefaultOutput : kAudioUnitSubType_HALOutput;
#else
2022-04-25 12:02:45 +08:00
desc.componentSubType = kAudioUnitSubType_RemoteIO;
#endif
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
AudioComponent comp{AudioComponentFindNext(NULL, &desc)};
if(comp == nullptr)
throw al::backend_exception{al::backend_error::NoDevice, "Could not find audio component"};
2021-05-14 10:15:42 +08:00
AudioUnit audioUnit{};
OSStatus err{AudioComponentInstanceNew(comp, &audioUnit)};
if(err != noErr)
throw al::backend_exception{al::backend_error::NoDevice,
"Could not create component instance: %u", err};
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
if(audioDevice != kAudioDeviceUnknown)
AudioUnitSetProperty(audioUnit, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Global, OutputElement, &audioDevice, sizeof(AudioDeviceID));
2022-04-25 12:02:45 +08:00
#endif
2021-05-14 10:15:42 +08:00
err = AudioUnitInitialize(audioUnit);
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"Could not initialize audio unit: %u", err};
2021-05-14 10:15:42 +08:00
/* WARNING: I don't know if "valid" audio unit values are guaranteed to be
* non-0. If not, this logic is broken.
*/
if(mAudioUnit)
{
AudioUnitUninitialize(mAudioUnit);
AudioComponentInstanceDispose(mAudioUnit);
}
mAudioUnit = audioUnit;
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
if(name)
mDevice->DeviceName = name;
else
{
UInt32 propSize{sizeof(audioDevice)};
audioDevice = kAudioDeviceUnknown;
AudioUnitGetProperty(audioUnit, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Global, OutputElement, &audioDevice, &propSize);
2022-04-25 12:02:45 +08:00
std::string devname{GetDeviceName(audioDevice)};
if(!devname.empty()) mDevice->DeviceName = std::move(devname);
else mDevice->DeviceName = "Unknown Device Name";
}
#else
mDevice->DeviceName = name;
2022-04-25 12:02:45 +08:00
#endif
}
bool CoreAudioPlayback::reset()
{
OSStatus err{AudioUnitUninitialize(mAudioUnit)};
if(err != noErr)
ERR("-- AudioUnitUninitialize failed.\n");
/* retrieve default output unit's properties (output side) */
AudioStreamBasicDescription streamFormat{};
2022-04-25 12:02:45 +08:00
UInt32 size{sizeof(streamFormat)};
err = AudioUnitGetProperty(mAudioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output,
OutputElement, &streamFormat, &size);
2022-04-25 12:02:45 +08:00
if(err != noErr || size != sizeof(streamFormat))
{
ERR("AudioUnitGetProperty failed\n");
return false;
}
#if 0
TRACE("Output streamFormat of default output unit -\n");
TRACE(" streamFormat.mFramesPerPacket = %d\n", streamFormat.mFramesPerPacket);
TRACE(" streamFormat.mChannelsPerFrame = %d\n", streamFormat.mChannelsPerFrame);
TRACE(" streamFormat.mBitsPerChannel = %d\n", streamFormat.mBitsPerChannel);
TRACE(" streamFormat.mBytesPerPacket = %d\n", streamFormat.mBytesPerPacket);
TRACE(" streamFormat.mBytesPerFrame = %d\n", streamFormat.mBytesPerFrame);
TRACE(" streamFormat.mSampleRate = %5.0f\n", streamFormat.mSampleRate);
#endif
2022-04-25 12:02:45 +08:00
/* Use the sample rate from the output unit's current parameters, but reset
* everything else.
*/
if(mDevice->Frequency != streamFormat.mSampleRate)
{
mDevice->BufferSize = static_cast<uint>(mDevice->BufferSize*streamFormat.mSampleRate/
mDevice->Frequency + 0.5);
mDevice->Frequency = static_cast<uint>(streamFormat.mSampleRate);
}
/* FIXME: How to tell what channels are what in the output device, and how
2022-04-25 12:02:45 +08:00
* to specify what we're giving? e.g. 6.0 vs 5.1
*/
streamFormat.mChannelsPerFrame = mDevice->channelsFromFmt();
streamFormat.mFramesPerPacket = 1;
2022-04-25 12:02:45 +08:00
streamFormat.mFormatFlags = kAudioFormatFlagsNativeEndian | kLinearPCMFormatFlagIsPacked;
streamFormat.mFormatID = kAudioFormatLinearPCM;
switch(mDevice->FmtType)
{
case DevFmtUByte:
mDevice->FmtType = DevFmtByte;
/* fall-through */
case DevFmtByte:
2022-04-25 12:02:45 +08:00
streamFormat.mFormatFlags |= kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 8;
break;
case DevFmtUShort:
mDevice->FmtType = DevFmtShort;
/* fall-through */
case DevFmtShort:
2022-04-25 12:02:45 +08:00
streamFormat.mFormatFlags |= kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 16;
break;
case DevFmtUInt:
mDevice->FmtType = DevFmtInt;
/* fall-through */
case DevFmtInt:
2022-04-25 12:02:45 +08:00
streamFormat.mFormatFlags |= kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 32;
break;
case DevFmtFloat:
2022-04-25 12:02:45 +08:00
streamFormat.mFormatFlags |= kLinearPCMFormatFlagIsFloat;
streamFormat.mBitsPerChannel = 32;
break;
}
2022-04-25 12:02:45 +08:00
streamFormat.mBytesPerFrame = streamFormat.mChannelsPerFrame*streamFormat.mBitsPerChannel/8;
streamFormat.mBytesPerPacket = streamFormat.mBytesPerFrame*streamFormat.mFramesPerPacket;
err = AudioUnitSetProperty(mAudioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input,
OutputElement, &streamFormat, sizeof(streamFormat));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
return false;
}
2022-04-25 12:02:45 +08:00
setDefaultWFXChannelOrder();
/* setup callback */
mFrameSize = mDevice->frameSizeFromFmt();
AURenderCallbackStruct input{};
input.inputProc = CoreAudioPlayback::MixerProcC;
input.inputProcRefCon = this;
err = AudioUnitSetProperty(mAudioUnit, kAudioUnitProperty_SetRenderCallback,
kAudioUnitScope_Input, OutputElement, &input, sizeof(AURenderCallbackStruct));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
return false;
}
/* init the default audio unit... */
err = AudioUnitInitialize(mAudioUnit);
if(err != noErr)
{
ERR("AudioUnitInitialize failed\n");
return false;
}
return true;
}
void CoreAudioPlayback::start()
{
const OSStatus err{AudioOutputUnitStart(mAudioUnit)};
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"AudioOutputUnitStart failed: %d", err};
}
void CoreAudioPlayback::stop()
{
OSStatus err{AudioOutputUnitStop(mAudioUnit)};
if(err != noErr)
ERR("AudioOutputUnitStop failed\n");
}
struct CoreAudioCapture final : public BackendBase {
2021-05-14 10:15:42 +08:00
CoreAudioCapture(DeviceBase *device) noexcept : BackendBase{device} { }
~CoreAudioCapture() override;
OSStatus RecordProc(AudioUnitRenderActionFlags *ioActionFlags,
const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber,
UInt32 inNumberFrames, AudioBufferList *ioData) noexcept;
static OSStatus RecordProcC(void *inRefCon, AudioUnitRenderActionFlags *ioActionFlags,
const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames,
AudioBufferList *ioData) noexcept
{
return static_cast<CoreAudioCapture*>(inRefCon)->RecordProc(ioActionFlags, inTimeStamp,
inBusNumber, inNumberFrames, ioData);
}
void open(const char *name) override;
void start() override;
void stop() override;
void captureSamples(al::byte *buffer, uint samples) override;
uint availableSamples() override;
AudioUnit mAudioUnit{0};
uint mFrameSize{0u};
AudioStreamBasicDescription mFormat{}; // This is the OpenAL format as a CoreAudio ASBD
SampleConverterPtr mConverter;
al::vector<char> mCaptureData;
2023-02-04 15:03:54 +08:00
RingBufferPtr mRing{nullptr};
DEF_NEWDEL(CoreAudioCapture)
};
CoreAudioCapture::~CoreAudioCapture()
{
if(mAudioUnit)
AudioComponentInstanceDispose(mAudioUnit);
mAudioUnit = 0;
}
2023-02-04 15:03:54 +08:00
OSStatus CoreAudioCapture::RecordProc(AudioUnitRenderActionFlags *ioActionFlags,
const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames,
AudioBufferList*) noexcept
{
union {
al::byte _[maxz(sizeof(AudioBufferList), offsetof(AudioBufferList, mBuffers[1]))];
AudioBufferList list;
} audiobuf{};
2023-02-04 15:03:54 +08:00
audiobuf.list.mNumberBuffers = 1;
audiobuf.list.mBuffers[0].mNumberChannels = mFormat.mChannelsPerFrame;
audiobuf.list.mBuffers[0].mData = mCaptureData.data();
audiobuf.list.mBuffers[0].mDataByteSize = static_cast<UInt32>(mCaptureData.size());
2023-02-04 15:03:54 +08:00
OSStatus err{AudioUnitRender(mAudioUnit, ioActionFlags, inTimeStamp, inBusNumber,
inNumberFrames, &audiobuf.list)};
if(err != noErr)
{
ERR("AudioUnitRender capture error: %d\n", err);
return err;
}
2023-02-04 15:03:54 +08:00
mRing->write(mCaptureData.data(), inNumberFrames);
return noErr;
}
void CoreAudioCapture::open(const char *name)
{
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
AudioDeviceID audioDevice{kAudioDeviceUnknown};
if(!name)
GetHwProperty(kAudioHardwarePropertyDefaultInputDevice, sizeof(audioDevice),
&audioDevice);
else
{
if(CaptureList.empty())
EnumerateDevices(CaptureList, true);
2022-04-25 12:02:45 +08:00
auto find_name = [name](const DeviceEntry &entry) -> bool
{ return entry.mName == name; };
auto devmatch = std::find_if(CaptureList.cbegin(), CaptureList.cend(), find_name);
if(devmatch == CaptureList.cend())
throw al::backend_exception{al::backend_error::NoDevice,
"Device name \"%s\" not found", name};
audioDevice = devmatch->mId;
}
#else
if(!name)
name = ca_device;
else if(strcmp(name, ca_device) != 0)
throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found",
name};
2022-04-25 12:02:45 +08:00
#endif
2022-04-25 12:02:45 +08:00
AudioComponentDescription desc{};
desc.componentType = kAudioUnitType_Output;
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
desc.componentSubType = (audioDevice == kAudioDeviceUnknown) ?
kAudioUnitSubType_DefaultOutput : kAudioUnitSubType_HALOutput;
#else
2022-04-25 12:02:45 +08:00
desc.componentSubType = kAudioUnitSubType_RemoteIO;
#endif
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
// Search for component with given description
2022-04-25 12:02:45 +08:00
AudioComponent comp{AudioComponentFindNext(NULL, &desc)};
if(comp == NULL)
throw al::backend_exception{al::backend_error::NoDevice, "Could not find audio component"};
// Open the component
2022-04-25 12:02:45 +08:00
OSStatus err{AudioComponentInstanceNew(comp, &mAudioUnit)};
if(err != noErr)
throw al::backend_exception{al::backend_error::NoDevice,
"Could not create component instance: %u", err};
// Turn off AudioUnit output
2022-04-25 12:02:45 +08:00
UInt32 enableIO{0};
err = AudioUnitSetProperty(mAudioUnit, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Output, OutputElement, &enableIO, sizeof(enableIO));
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"Could not disable audio unit output property: %u", err};
// Turn on AudioUnit input
enableIO = 1;
err = AudioUnitSetProperty(mAudioUnit, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Input, InputElement, &enableIO, sizeof(enableIO));
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"Could not enable audio unit input property: %u", err};
#if CAN_ENUMERATE
if(audioDevice != kAudioDeviceUnknown)
AudioUnitSetProperty(mAudioUnit, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Global, InputElement, &audioDevice, sizeof(AudioDeviceID));
#endif
// set capture callback
2022-04-25 12:02:45 +08:00
AURenderCallbackStruct input{};
input.inputProc = CoreAudioCapture::RecordProcC;
input.inputProcRefCon = this;
err = AudioUnitSetProperty(mAudioUnit, kAudioOutputUnitProperty_SetInputCallback,
kAudioUnitScope_Global, InputElement, &input, sizeof(AURenderCallbackStruct));
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"Could not set capture callback: %u", err};
// Disable buffer allocation for capture
UInt32 flag{0};
err = AudioUnitSetProperty(mAudioUnit, kAudioUnitProperty_ShouldAllocateBuffer,
kAudioUnitScope_Output, InputElement, &flag, sizeof(flag));
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"Could not disable buffer allocation property: %u", err};
// Initialize the device
err = AudioUnitInitialize(mAudioUnit);
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"Could not initialize audio unit: %u", err};
// Get the hardware format
2022-04-25 12:02:45 +08:00
AudioStreamBasicDescription hardwareFormat{};
UInt32 propertySize{sizeof(hardwareFormat)};
err = AudioUnitGetProperty(mAudioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input,
InputElement, &hardwareFormat, &propertySize);
2022-04-25 12:02:45 +08:00
if(err != noErr || propertySize != sizeof(hardwareFormat))
throw al::backend_exception{al::backend_error::DeviceError,
"Could not get input format: %u", err};
// Set up the requested format description
2022-04-25 12:02:45 +08:00
AudioStreamBasicDescription requestedFormat{};
switch(mDevice->FmtType)
{
case DevFmtByte:
requestedFormat.mBitsPerChannel = 8;
requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked;
break;
case DevFmtUByte:
requestedFormat.mBitsPerChannel = 8;
requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked;
break;
case DevFmtShort:
requestedFormat.mBitsPerChannel = 16;
2022-04-25 12:02:45 +08:00
requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger
| kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtUShort:
requestedFormat.mBitsPerChannel = 16;
requestedFormat.mFormatFlags = kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtInt:
requestedFormat.mBitsPerChannel = 32;
2022-04-25 12:02:45 +08:00
requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger
| kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtUInt:
requestedFormat.mBitsPerChannel = 32;
requestedFormat.mFormatFlags = kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtFloat:
requestedFormat.mBitsPerChannel = 32;
2022-04-25 12:02:45 +08:00
requestedFormat.mFormatFlags = kLinearPCMFormatFlagIsFloat | kAudioFormatFlagsNativeEndian
| kAudioFormatFlagIsPacked;
break;
}
switch(mDevice->FmtChans)
{
case DevFmtMono:
requestedFormat.mChannelsPerFrame = 1;
break;
case DevFmtStereo:
requestedFormat.mChannelsPerFrame = 2;
break;
case DevFmtQuad:
case DevFmtX51:
case DevFmtX61:
case DevFmtX71:
2023-02-04 15:03:54 +08:00
case DevFmtX714:
case DevFmtX3D71:
case DevFmtAmbi3D:
throw al::backend_exception{al::backend_error::DeviceError, "%s not supported",
DevFmtChannelsString(mDevice->FmtChans)};
}
requestedFormat.mBytesPerFrame = requestedFormat.mChannelsPerFrame * requestedFormat.mBitsPerChannel / 8;
requestedFormat.mBytesPerPacket = requestedFormat.mBytesPerFrame;
requestedFormat.mSampleRate = mDevice->Frequency;
requestedFormat.mFormatID = kAudioFormatLinearPCM;
requestedFormat.mReserved = 0;
requestedFormat.mFramesPerPacket = 1;
// save requested format description for later use
mFormat = requestedFormat;
mFrameSize = mDevice->frameSizeFromFmt();
// Use intermediate format for sample rate conversion (outputFormat)
// Set sample rate to the same as hardware for resampling later
2022-04-25 12:02:45 +08:00
AudioStreamBasicDescription outputFormat{requestedFormat};
outputFormat.mSampleRate = hardwareFormat.mSampleRate;
// The output format should be the requested format, but using the hardware sample rate
// This is because the AudioUnit will automatically scale other properties, except for sample rate
err = AudioUnitSetProperty(mAudioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output,
InputElement, &outputFormat, sizeof(outputFormat));
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"Could not set input format: %u", err};
/* Calculate the minimum AudioUnit output format frame count for the pre-
* conversion ring buffer. Ensure at least 100ms for the total buffer.
*/
double srateScale{outputFormat.mSampleRate / mDevice->Frequency};
auto FrameCount64 = maxu64(static_cast<uint64_t>(std::ceil(mDevice->BufferSize*srateScale)),
static_cast<UInt32>(outputFormat.mSampleRate)/10);
FrameCount64 += MaxResamplerPadding;
if(FrameCount64 > std::numeric_limits<int32_t>::max())
throw al::backend_exception{al::backend_error::DeviceError,
"Calculated frame count is too large: %" PRIu64, FrameCount64};
UInt32 outputFrameCount{};
propertySize = sizeof(outputFrameCount);
err = AudioUnitGetProperty(mAudioUnit, kAudioUnitProperty_MaximumFramesPerSlice,
kAudioUnitScope_Global, OutputElement, &outputFrameCount, &propertySize);
if(err != noErr || propertySize != sizeof(outputFrameCount))
throw al::backend_exception{al::backend_error::DeviceError,
"Could not get input frame count: %u", err};
2023-02-04 15:03:54 +08:00
mCaptureData.resize(outputFrameCount * mFrameSize);
outputFrameCount = static_cast<UInt32>(maxu64(outputFrameCount, FrameCount64));
mRing = RingBuffer::Create(outputFrameCount, mFrameSize, false);
/* Set up sample converter if needed */
if(outputFormat.mSampleRate != mDevice->Frequency)
2023-02-04 15:03:54 +08:00
mConverter = SampleConverter::Create(mDevice->FmtType, mDevice->FmtType,
mFormat.mChannelsPerFrame, static_cast<uint>(hardwareFormat.mSampleRate),
mDevice->Frequency, Resampler::FastBSinc24);
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
if(name)
mDevice->DeviceName = name;
else
{
UInt32 propSize{sizeof(audioDevice)};
audioDevice = kAudioDeviceUnknown;
AudioUnitGetProperty(mAudioUnit, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Global, InputElement, &audioDevice, &propSize);
2022-04-25 12:02:45 +08:00
std::string devname{GetDeviceName(audioDevice)};
if(!devname.empty()) mDevice->DeviceName = std::move(devname);
else mDevice->DeviceName = "Unknown Device Name";
}
#else
mDevice->DeviceName = name;
2022-04-25 12:02:45 +08:00
#endif
}
void CoreAudioCapture::start()
{
OSStatus err{AudioOutputUnitStart(mAudioUnit)};
if(err != noErr)
throw al::backend_exception{al::backend_error::DeviceError,
"AudioOutputUnitStart failed: %d", err};
}
void CoreAudioCapture::stop()
{
OSStatus err{AudioOutputUnitStop(mAudioUnit)};
if(err != noErr)
ERR("AudioOutputUnitStop failed\n");
}
void CoreAudioCapture::captureSamples(al::byte *buffer, uint samples)
{
if(!mConverter)
{
mRing->read(buffer, samples);
return;
}
auto rec_vec = mRing->getReadVector();
const void *src0{rec_vec.first.buf};
auto src0len = static_cast<uint>(rec_vec.first.len);
uint got{mConverter->convert(&src0, &src0len, buffer, samples)};
size_t total_read{rec_vec.first.len - src0len};
if(got < samples && !src0len && rec_vec.second.len > 0)
{
const void *src1{rec_vec.second.buf};
auto src1len = static_cast<uint>(rec_vec.second.len);
got += mConverter->convert(&src1, &src1len, buffer + got*mFrameSize, samples-got);
total_read += rec_vec.second.len - src1len;
}
mRing->readAdvance(total_read);
}
uint CoreAudioCapture::availableSamples()
{
if(!mConverter) return static_cast<uint>(mRing->readSpace());
return mConverter->availableOut(static_cast<uint>(mRing->readSpace()));
}
} // namespace
BackendFactory &CoreAudioBackendFactory::getFactory()
{
static CoreAudioBackendFactory factory{};
return factory;
}
bool CoreAudioBackendFactory::init() { return true; }
bool CoreAudioBackendFactory::querySupport(BackendType type)
{ return type == BackendType::Playback || type == BackendType::Capture; }
std::string CoreAudioBackendFactory::probe(BackendType type)
{
std::string outnames;
2022-04-25 12:02:45 +08:00
#if CAN_ENUMERATE
auto append_name = [&outnames](const DeviceEntry &entry) -> void
{
/* Includes null char. */
outnames.append(entry.mName.c_str(), entry.mName.length()+1);
};
switch(type)
{
case BackendType::Playback:
EnumerateDevices(PlaybackList, false);
std::for_each(PlaybackList.cbegin(), PlaybackList.cend(), append_name);
break;
case BackendType::Capture:
EnumerateDevices(CaptureList, true);
std::for_each(CaptureList.cbegin(), CaptureList.cend(), append_name);
break;
}
#else
switch(type)
{
case BackendType::Playback:
case BackendType::Capture:
/* Includes null char. */
outnames.append(ca_device, sizeof(ca_device));
break;
}
2022-04-25 12:02:45 +08:00
#endif
return outnames;
}
2021-05-14 10:15:42 +08:00
BackendPtr CoreAudioBackendFactory::createBackend(DeviceBase *device, BackendType type)
{
if(type == BackendType::Playback)
return BackendPtr{new CoreAudioPlayback{device}};
if(type == BackendType::Capture)
return BackendPtr{new CoreAudioCapture{device}};
return nullptr;
}