mirror of https://github.com/axmolengine/axmol.git
369 lines
10 KiB
C
369 lines
10 KiB
C
|
#ifndef GIM_TRI_COLLISION_H_INCLUDED
|
||
|
#define GIM_TRI_COLLISION_H_INCLUDED
|
||
|
|
||
|
/*! \file gim_tri_collision.h
|
||
|
\author Francisco Leon Najera
|
||
|
*/
|
||
|
/*
|
||
|
-----------------------------------------------------------------------------
|
||
|
This source file is part of GIMPACT Library.
|
||
|
|
||
|
For the latest info, see http://gimpact.sourceforge.net/
|
||
|
|
||
|
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
|
||
|
email: projectileman@yahoo.com
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of EITHER:
|
||
|
(1) The GNU Lesser General Public License as published by the Free
|
||
|
Software Foundation; either version 2.1 of the License, or (at
|
||
|
your option) any later version. The text of the GNU Lesser
|
||
|
General Public License is included with this library in the
|
||
|
file GIMPACT-LICENSE-LGPL.TXT.
|
||
|
(2) The BSD-style license that is included with this library in
|
||
|
the file GIMPACT-LICENSE-BSD.TXT.
|
||
|
(3) The zlib/libpng license that is included with this library in
|
||
|
the file GIMPACT-LICENSE-ZLIB.TXT.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
|
||
|
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
|
||
|
|
||
|
-----------------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
#include "gim_box_collision.h"
|
||
|
#include "gim_clip_polygon.h"
|
||
|
|
||
|
#ifndef MAX_TRI_CLIPPING
|
||
|
#define MAX_TRI_CLIPPING 16
|
||
|
#endif
|
||
|
|
||
|
//! Structure for collision
|
||
|
struct GIM_TRIANGLE_CONTACT_DATA
|
||
|
{
|
||
|
GREAL m_penetration_depth;
|
||
|
GUINT m_point_count;
|
||
|
btVector4 m_separating_normal;
|
||
|
btVector3 m_points[MAX_TRI_CLIPPING];
|
||
|
|
||
|
SIMD_FORCE_INLINE void copy_from(const GIM_TRIANGLE_CONTACT_DATA &other)
|
||
|
{
|
||
|
m_penetration_depth = other.m_penetration_depth;
|
||
|
m_separating_normal = other.m_separating_normal;
|
||
|
m_point_count = other.m_point_count;
|
||
|
GUINT i = m_point_count;
|
||
|
while (i--)
|
||
|
{
|
||
|
m_points[i] = other.m_points[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
GIM_TRIANGLE_CONTACT_DATA()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
GIM_TRIANGLE_CONTACT_DATA(const GIM_TRIANGLE_CONTACT_DATA &other)
|
||
|
{
|
||
|
copy_from(other);
|
||
|
}
|
||
|
|
||
|
//! classify points that are closer
|
||
|
template <typename DISTANCE_FUNC, typename CLASS_PLANE>
|
||
|
SIMD_FORCE_INLINE void mergepoints_generic(const CLASS_PLANE &plane,
|
||
|
GREAL margin, const btVector3 *points, GUINT point_count, DISTANCE_FUNC distance_func)
|
||
|
{
|
||
|
m_point_count = 0;
|
||
|
m_penetration_depth = -1000.0f;
|
||
|
|
||
|
GUINT point_indices[MAX_TRI_CLIPPING];
|
||
|
|
||
|
GUINT _k;
|
||
|
|
||
|
for (_k = 0; _k < point_count; _k++)
|
||
|
{
|
||
|
GREAL _dist = -distance_func(plane, points[_k]) + margin;
|
||
|
|
||
|
if (_dist >= 0.0f)
|
||
|
{
|
||
|
if (_dist > m_penetration_depth)
|
||
|
{
|
||
|
m_penetration_depth = _dist;
|
||
|
point_indices[0] = _k;
|
||
|
m_point_count = 1;
|
||
|
}
|
||
|
else if ((_dist + G_EPSILON) >= m_penetration_depth)
|
||
|
{
|
||
|
point_indices[m_point_count] = _k;
|
||
|
m_point_count++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (_k = 0; _k < m_point_count; _k++)
|
||
|
{
|
||
|
m_points[_k] = points[point_indices[_k]];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//! classify points that are closer
|
||
|
SIMD_FORCE_INLINE void merge_points(const btVector4 &plane, GREAL margin,
|
||
|
const btVector3 *points, GUINT point_count)
|
||
|
{
|
||
|
m_separating_normal = plane;
|
||
|
mergepoints_generic(plane, margin, points, point_count, DISTANCE_PLANE_3D_FUNC());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//! Class for colliding triangles
|
||
|
class GIM_TRIANGLE
|
||
|
{
|
||
|
public:
|
||
|
btScalar m_margin;
|
||
|
btVector3 m_vertices[3];
|
||
|
|
||
|
GIM_TRIANGLE() : m_margin(0.1f)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE GIM_AABB get_box() const
|
||
|
{
|
||
|
return GIM_AABB(m_vertices[0], m_vertices[1], m_vertices[2], m_margin);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void get_normal(btVector3 &normal) const
|
||
|
{
|
||
|
TRIANGLE_NORMAL(m_vertices[0], m_vertices[1], m_vertices[2], normal);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void get_plane(btVector4 &plane) const
|
||
|
{
|
||
|
TRIANGLE_PLANE(m_vertices[0], m_vertices[1], m_vertices[2], plane);
|
||
|
;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void apply_transform(const btTransform &trans)
|
||
|
{
|
||
|
m_vertices[0] = trans(m_vertices[0]);
|
||
|
m_vertices[1] = trans(m_vertices[1]);
|
||
|
m_vertices[2] = trans(m_vertices[2]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void get_edge_plane(GUINT edge_index, const btVector3 &triangle_normal, btVector4 &plane) const
|
||
|
{
|
||
|
const btVector3 &e0 = m_vertices[edge_index];
|
||
|
const btVector3 &e1 = m_vertices[(edge_index + 1) % 3];
|
||
|
EDGE_PLANE(e0, e1, triangle_normal, plane);
|
||
|
}
|
||
|
|
||
|
//! Gets the relative transformation of this triangle
|
||
|
/*!
|
||
|
The transformation is oriented to the triangle normal , and aligned to the 1st edge of this triangle. The position corresponds to vertice 0:
|
||
|
- triangle normal corresponds to Z axis.
|
||
|
- 1st normalized edge corresponds to X axis,
|
||
|
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE void get_triangle_transform(btTransform &triangle_transform) const
|
||
|
{
|
||
|
btMatrix3x3 &matrix = triangle_transform.getBasis();
|
||
|
|
||
|
btVector3 zaxis;
|
||
|
get_normal(zaxis);
|
||
|
MAT_SET_Z(matrix, zaxis);
|
||
|
|
||
|
btVector3 xaxis = m_vertices[1] - m_vertices[0];
|
||
|
VEC_NORMALIZE(xaxis);
|
||
|
MAT_SET_X(matrix, xaxis);
|
||
|
|
||
|
//y axis
|
||
|
xaxis = zaxis.cross(xaxis);
|
||
|
MAT_SET_Y(matrix, xaxis);
|
||
|
|
||
|
triangle_transform.setOrigin(m_vertices[0]);
|
||
|
}
|
||
|
|
||
|
//! Test triangles by finding separating axis
|
||
|
/*!
|
||
|
\param other Triangle for collide
|
||
|
\param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
|
||
|
*/
|
||
|
bool collide_triangle_hard_test(
|
||
|
const GIM_TRIANGLE &other,
|
||
|
GIM_TRIANGLE_CONTACT_DATA &contact_data) const;
|
||
|
|
||
|
//! Test boxes before doing hard test
|
||
|
/*!
|
||
|
\param other Triangle for collide
|
||
|
\param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
|
||
|
\
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE bool collide_triangle(
|
||
|
const GIM_TRIANGLE &other,
|
||
|
GIM_TRIANGLE_CONTACT_DATA &contact_data) const
|
||
|
{
|
||
|
//test box collisioin
|
||
|
GIM_AABB boxu(m_vertices[0], m_vertices[1], m_vertices[2], m_margin);
|
||
|
GIM_AABB boxv(other.m_vertices[0], other.m_vertices[1], other.m_vertices[2], other.m_margin);
|
||
|
if (!boxu.has_collision(boxv)) return false;
|
||
|
|
||
|
//do hard test
|
||
|
return collide_triangle_hard_test(other, contact_data);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
|
||
|
Solve the System for u,v parameters:
|
||
|
|
||
|
u*axe1[i1] + v*axe2[i1] = vecproj[i1]
|
||
|
u*axe1[i2] + v*axe2[i2] = vecproj[i2]
|
||
|
|
||
|
sustitute:
|
||
|
v = (vecproj[i2] - u*axe1[i2])/axe2[i2]
|
||
|
|
||
|
then the first equation in terms of 'u':
|
||
|
|
||
|
--> u*axe1[i1] + ((vecproj[i2] - u*axe1[i2])/axe2[i2])*axe2[i1] = vecproj[i1]
|
||
|
|
||
|
--> u*axe1[i1] + vecproj[i2]*axe2[i1]/axe2[i2] - u*axe1[i2]*axe2[i1]/axe2[i2] = vecproj[i1]
|
||
|
|
||
|
--> u*(axe1[i1] - axe1[i2]*axe2[i1]/axe2[i2]) = vecproj[i1] - vecproj[i2]*axe2[i1]/axe2[i2]
|
||
|
|
||
|
--> u*((axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1])/axe2[i2]) = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1])/axe2[i2]
|
||
|
|
||
|
--> u*(axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1]) = vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]
|
||
|
|
||
|
--> u = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]) /(axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1])
|
||
|
|
||
|
if 0.0<= u+v <=1.0 then they are inside of triangle
|
||
|
|
||
|
\return false if the point is outside of triangle.This function doesn't take the margin
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE bool get_uv_parameters(
|
||
|
const btVector3 &point,
|
||
|
const btVector3 &tri_plane,
|
||
|
GREAL &u, GREAL &v) const
|
||
|
{
|
||
|
btVector3 _axe1 = m_vertices[1] - m_vertices[0];
|
||
|
btVector3 _axe2 = m_vertices[2] - m_vertices[0];
|
||
|
btVector3 _vecproj = point - m_vertices[0];
|
||
|
GUINT _i1 = (tri_plane.closestAxis() + 1) % 3;
|
||
|
GUINT _i2 = (_i1 + 1) % 3;
|
||
|
if (btFabs(_axe2[_i2]) < G_EPSILON)
|
||
|
{
|
||
|
u = (_vecproj[_i2] * _axe2[_i1] - _vecproj[_i1] * _axe2[_i2]) / (_axe1[_i2] * _axe2[_i1] - _axe1[_i1] * _axe2[_i2]);
|
||
|
v = (_vecproj[_i1] - u * _axe1[_i1]) / _axe2[_i1];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
u = (_vecproj[_i1] * _axe2[_i2] - _vecproj[_i2] * _axe2[_i1]) / (_axe1[_i1] * _axe2[_i2] - _axe1[_i2] * _axe2[_i1]);
|
||
|
v = (_vecproj[_i2] - u * _axe1[_i2]) / _axe2[_i2];
|
||
|
}
|
||
|
|
||
|
if (u < -G_EPSILON)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
else if (v < -G_EPSILON)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
btScalar sumuv;
|
||
|
sumuv = u + v;
|
||
|
if (sumuv < -G_EPSILON)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
else if (sumuv - 1.0f > G_EPSILON)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//! is point in triangle beam?
|
||
|
/*!
|
||
|
Test if point is in triangle, with m_margin tolerance
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE bool is_point_inside(const btVector3 &point, const btVector3 &tri_normal) const
|
||
|
{
|
||
|
//Test with edge 0
|
||
|
btVector4 edge_plane;
|
||
|
this->get_edge_plane(0, tri_normal, edge_plane);
|
||
|
GREAL dist = DISTANCE_PLANE_POINT(edge_plane, point);
|
||
|
if (dist - m_margin > 0.0f) return false; // outside plane
|
||
|
|
||
|
this->get_edge_plane(1, tri_normal, edge_plane);
|
||
|
dist = DISTANCE_PLANE_POINT(edge_plane, point);
|
||
|
if (dist - m_margin > 0.0f) return false; // outside plane
|
||
|
|
||
|
this->get_edge_plane(2, tri_normal, edge_plane);
|
||
|
dist = DISTANCE_PLANE_POINT(edge_plane, point);
|
||
|
if (dist - m_margin > 0.0f) return false; // outside plane
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//! Bidireccional ray collision
|
||
|
SIMD_FORCE_INLINE bool ray_collision(
|
||
|
const btVector3 &vPoint,
|
||
|
const btVector3 &vDir, btVector3 &pout, btVector3 &triangle_normal,
|
||
|
GREAL &tparam, GREAL tmax = G_REAL_INFINITY)
|
||
|
{
|
||
|
btVector4 faceplane;
|
||
|
{
|
||
|
btVector3 dif1 = m_vertices[1] - m_vertices[0];
|
||
|
btVector3 dif2 = m_vertices[2] - m_vertices[0];
|
||
|
VEC_CROSS(faceplane, dif1, dif2);
|
||
|
faceplane[3] = m_vertices[0].dot(faceplane);
|
||
|
}
|
||
|
|
||
|
GUINT res = LINE_PLANE_COLLISION(faceplane, vDir, vPoint, pout, tparam, btScalar(0), tmax);
|
||
|
if (res == 0) return false;
|
||
|
if (!is_point_inside(pout, faceplane)) return false;
|
||
|
|
||
|
if (res == 2) //invert normal
|
||
|
{
|
||
|
triangle_normal.setValue(-faceplane[0], -faceplane[1], -faceplane[2]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
triangle_normal.setValue(faceplane[0], faceplane[1], faceplane[2]);
|
||
|
}
|
||
|
|
||
|
VEC_NORMALIZE(triangle_normal);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//! one direccion ray collision
|
||
|
SIMD_FORCE_INLINE bool ray_collision_front_side(
|
||
|
const btVector3 &vPoint,
|
||
|
const btVector3 &vDir, btVector3 &pout, btVector3 &triangle_normal,
|
||
|
GREAL &tparam, GREAL tmax = G_REAL_INFINITY)
|
||
|
{
|
||
|
btVector4 faceplane;
|
||
|
{
|
||
|
btVector3 dif1 = m_vertices[1] - m_vertices[0];
|
||
|
btVector3 dif2 = m_vertices[2] - m_vertices[0];
|
||
|
VEC_CROSS(faceplane, dif1, dif2);
|
||
|
faceplane[3] = m_vertices[0].dot(faceplane);
|
||
|
}
|
||
|
|
||
|
GUINT res = LINE_PLANE_COLLISION(faceplane, vDir, vPoint, pout, tparam, btScalar(0), tmax);
|
||
|
if (res != 1) return false;
|
||
|
|
||
|
if (!is_point_inside(pout, faceplane)) return false;
|
||
|
|
||
|
triangle_normal.setValue(faceplane[0], faceplane[1], faceplane[2]);
|
||
|
|
||
|
VEC_NORMALIZE(triangle_normal);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#endif // GIM_TRI_COLLISION_H_INCLUDED
|