mirror of https://github.com/axmolengine/axmol.git
380 lines
9.7 KiB
C++
380 lines
9.7 KiB
C++
|
// SPDX-License-Identifier: Apache-2.0
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Copyright 2011-2021 Arm Limited
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
||
|
// use this file except in compliance with the License. You may obtain a copy
|
||
|
// of the License at:
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
// License for the specific language governing permissions and limitations
|
||
|
// under the License.
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* @brief Functions for generating partition tables on demand.
|
||
|
*/
|
||
|
|
||
|
#include "astcenc_internal.h"
|
||
|
|
||
|
/**
|
||
|
* @brief Generate a canonical representation of a partition pattern.
|
||
|
*
|
||
|
* The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store
|
||
|
* the remapped texel index. Remapping ensures that we only match on the partition pattern,
|
||
|
* independent of the partition order generated by the hash.
|
||
|
*
|
||
|
* @param texel_count The number of texels in the block.
|
||
|
* @param partition_of_texel The partition assignments, in hash order.
|
||
|
* @param[out] bit_pattern The output bit pattern representation.
|
||
|
*/
|
||
|
static void generate_canonical_partitioning(
|
||
|
int texel_count,
|
||
|
const uint8_t* partition_of_texel,
|
||
|
uint64_t bit_pattern[7]
|
||
|
) {
|
||
|
// Clear the pattern
|
||
|
for (int i = 0; i < 7; i++)
|
||
|
{
|
||
|
bit_pattern[i] = 0;
|
||
|
}
|
||
|
|
||
|
// Store a mapping to reorder the raw partitions so that the the partitions are ordered such
|
||
|
// that the lowest texel index in partition N is smaller than the lowest texel index in
|
||
|
// partition N + 1.
|
||
|
int mapped_index[BLOCK_MAX_PARTITIONS];
|
||
|
int map_weight_count = 0;
|
||
|
|
||
|
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
|
||
|
{
|
||
|
mapped_index[i] = -1;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < texel_count; i++)
|
||
|
{
|
||
|
int index = partition_of_texel[i];
|
||
|
|
||
|
if (mapped_index[index] == -1)
|
||
|
{
|
||
|
mapped_index[index] = map_weight_count++;
|
||
|
}
|
||
|
|
||
|
uint64_t xlat_index = mapped_index[index];
|
||
|
bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Compare two canonical patterns to see if they are the same.
|
||
|
*
|
||
|
* @param part1 The first canonical bit pattern to check.
|
||
|
* @param part2 The second canonical bit pattern to check.
|
||
|
*
|
||
|
* @return @c true if the patterns are the same, @c false otherwise.
|
||
|
*/
|
||
|
static bool compare_canonical_partitionings(
|
||
|
const uint64_t part1[7],
|
||
|
const uint64_t part2[7]
|
||
|
) {
|
||
|
return (part1[0] == part2[0]) && (part1[1] == part2[1]) &&
|
||
|
(part1[2] == part2[2]) && (part1[3] == part2[3]) &&
|
||
|
(part1[4] == part2[4]) && (part1[5] == part2[5]) &&
|
||
|
(part1[6] == part2[6]);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Compare all partition patterns and remove duplicates.
|
||
|
*
|
||
|
* The partitioning algorithm uses a hash function for texel assignment that can produce partitions
|
||
|
* which have the same texel assignment groupings. It is only useful for the compressor to test one
|
||
|
* of each, so we mark duplicates as invalid.
|
||
|
*
|
||
|
* @param texel_count The first canonical bit pattern to check.
|
||
|
* @param[in,out] pt The table of partitioning information entries.
|
||
|
*/
|
||
|
static void remove_duplicate_partitionings(
|
||
|
int texel_count,
|
||
|
partition_info pt[BLOCK_MAX_PARTITIONINGS]
|
||
|
) {
|
||
|
uint64_t bit_patterns[BLOCK_MAX_PARTITIONINGS * 7];
|
||
|
|
||
|
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++)
|
||
|
{
|
||
|
generate_canonical_partitioning(texel_count, pt[i].partition_of_texel, bit_patterns + i * 7);
|
||
|
|
||
|
for (unsigned int j = 0; j < i; j++)
|
||
|
{
|
||
|
if (compare_canonical_partitionings(bit_patterns + 7 * i, bit_patterns + 7 * j))
|
||
|
{
|
||
|
pt[i].partition_count = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Hash function used for procedural partition assignment.
|
||
|
*
|
||
|
* @param inp The hash seed.
|
||
|
*
|
||
|
* @return The hashed value.
|
||
|
*/
|
||
|
static uint32_t hash52(
|
||
|
uint32_t inp
|
||
|
) {
|
||
|
inp ^= inp >> 15;
|
||
|
|
||
|
// (2^4 + 1) * (2^7 + 1) * (2^17 - 1)
|
||
|
inp *= 0xEEDE0891;
|
||
|
inp ^= inp >> 5;
|
||
|
inp += inp << 16;
|
||
|
inp ^= inp >> 7;
|
||
|
inp ^= inp >> 3;
|
||
|
inp ^= inp << 6;
|
||
|
inp ^= inp >> 17;
|
||
|
return inp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Select texel assignment for a single coordinate.
|
||
|
*
|
||
|
* @param seed The seed - the partition index from the block.
|
||
|
* @param x The texel X coordinate in the block.
|
||
|
* @param y The texel Y coordinate in the block.
|
||
|
* @param z The texel Z coordinate in the block.
|
||
|
* @param partition_count The total partition count of this encoding.
|
||
|
* @param small_block @c true if the blockhas fewer than 32 texels.
|
||
|
*
|
||
|
* @return The assigned partition index for this texel.
|
||
|
*/
|
||
|
static int select_partition(
|
||
|
int seed,
|
||
|
int x,
|
||
|
int y,
|
||
|
int z,
|
||
|
int partition_count,
|
||
|
bool small_block
|
||
|
) {
|
||
|
// For small blocks bias the coordinates to get better distribution
|
||
|
if (small_block)
|
||
|
{
|
||
|
x <<= 1;
|
||
|
y <<= 1;
|
||
|
z <<= 1;
|
||
|
}
|
||
|
|
||
|
seed += (partition_count - 1) * 1024;
|
||
|
|
||
|
uint32_t rnum = hash52(seed);
|
||
|
|
||
|
uint8_t seed1 = rnum & 0xF;
|
||
|
uint8_t seed2 = (rnum >> 4) & 0xF;
|
||
|
uint8_t seed3 = (rnum >> 8) & 0xF;
|
||
|
uint8_t seed4 = (rnum >> 12) & 0xF;
|
||
|
uint8_t seed5 = (rnum >> 16) & 0xF;
|
||
|
uint8_t seed6 = (rnum >> 20) & 0xF;
|
||
|
uint8_t seed7 = (rnum >> 24) & 0xF;
|
||
|
uint8_t seed8 = (rnum >> 28) & 0xF;
|
||
|
uint8_t seed9 = (rnum >> 18) & 0xF;
|
||
|
uint8_t seed10 = (rnum >> 22) & 0xF;
|
||
|
uint8_t seed11 = (rnum >> 26) & 0xF;
|
||
|
uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
|
||
|
|
||
|
// Squaring all the seeds in order to bias their distribution towards lower values.
|
||
|
seed1 *= seed1;
|
||
|
seed2 *= seed2;
|
||
|
seed3 *= seed3;
|
||
|
seed4 *= seed4;
|
||
|
seed5 *= seed5;
|
||
|
seed6 *= seed6;
|
||
|
seed7 *= seed7;
|
||
|
seed8 *= seed8;
|
||
|
seed9 *= seed9;
|
||
|
seed10 *= seed10;
|
||
|
seed11 *= seed11;
|
||
|
seed12 *= seed12;
|
||
|
|
||
|
int sh1, sh2;
|
||
|
if (seed & 1)
|
||
|
{
|
||
|
sh1 = (seed & 2 ? 4 : 5);
|
||
|
sh2 = (partition_count == 3 ? 6 : 5);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sh1 = (partition_count == 3 ? 6 : 5);
|
||
|
sh2 = (seed & 2 ? 4 : 5);
|
||
|
}
|
||
|
|
||
|
int sh3 = (seed & 0x10) ? sh1 : sh2;
|
||
|
|
||
|
seed1 >>= sh1;
|
||
|
seed2 >>= sh2;
|
||
|
seed3 >>= sh1;
|
||
|
seed4 >>= sh2;
|
||
|
seed5 >>= sh1;
|
||
|
seed6 >>= sh2;
|
||
|
seed7 >>= sh1;
|
||
|
seed8 >>= sh2;
|
||
|
|
||
|
seed9 >>= sh3;
|
||
|
seed10 >>= sh3;
|
||
|
seed11 >>= sh3;
|
||
|
seed12 >>= sh3;
|
||
|
|
||
|
int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
|
||
|
int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
|
||
|
int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
|
||
|
int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
|
||
|
|
||
|
// Apply the saw
|
||
|
a &= 0x3F;
|
||
|
b &= 0x3F;
|
||
|
c &= 0x3F;
|
||
|
d &= 0x3F;
|
||
|
|
||
|
// Remove some of the components if we are to output < 4 partitions.
|
||
|
if (partition_count <= 3)
|
||
|
{
|
||
|
d = 0;
|
||
|
}
|
||
|
|
||
|
if (partition_count <= 2)
|
||
|
{
|
||
|
c = 0;
|
||
|
}
|
||
|
|
||
|
if (partition_count <= 1)
|
||
|
{
|
||
|
b = 0;
|
||
|
}
|
||
|
|
||
|
int partition;
|
||
|
if (a >= b && a >= c && a >= d)
|
||
|
{
|
||
|
partition = 0;
|
||
|
}
|
||
|
else if (b >= c && b >= d)
|
||
|
{
|
||
|
partition = 1;
|
||
|
}
|
||
|
else if (c >= d)
|
||
|
{
|
||
|
partition = 2;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
partition = 3;
|
||
|
}
|
||
|
|
||
|
return partition;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Generate a single partition info structure.
|
||
|
*
|
||
|
* @param bsd The block size information.
|
||
|
* @param partition_count The partition count of this partitioning.
|
||
|
* @param partition_index The partition index / see of this partitioning.
|
||
|
* @param[out] pi The partition info structure to populate.
|
||
|
*/
|
||
|
static void generate_one_partition_info_entry(
|
||
|
const block_size_descriptor& bsd,
|
||
|
int partition_count,
|
||
|
int partition_index,
|
||
|
partition_info& pi
|
||
|
) {
|
||
|
int texels_per_block = bsd.texel_count;
|
||
|
bool small_block = texels_per_block < 32;
|
||
|
|
||
|
uint8_t *partition_of_texel = pi.partition_of_texel;
|
||
|
|
||
|
// Assign texels to partitions
|
||
|
int texel_idx = 0;
|
||
|
int counts[BLOCK_MAX_PARTITIONS] { 0 };
|
||
|
for (unsigned int z = 0; z < bsd.zdim; z++)
|
||
|
{
|
||
|
for (unsigned int y = 0; y < bsd.ydim; y++)
|
||
|
{
|
||
|
for (unsigned int x = 0; x < bsd.xdim; x++)
|
||
|
{
|
||
|
uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block);
|
||
|
pi.texels_of_partition[part][counts[part]++] = texel_idx++;
|
||
|
*partition_of_texel++ = part;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Fill loop tail so we can overfetch later
|
||
|
for (int i = 0; i < partition_count; i++)
|
||
|
{
|
||
|
int ptex_count = counts[i];
|
||
|
int ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count);
|
||
|
for (int j = ptex_count; j < ptex_count_simd; j++)
|
||
|
{
|
||
|
pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (counts[0] == 0)
|
||
|
{
|
||
|
pi.partition_count = 0;
|
||
|
}
|
||
|
else if (counts[1] == 0)
|
||
|
{
|
||
|
pi.partition_count = 1;
|
||
|
}
|
||
|
else if (counts[2] == 0)
|
||
|
{
|
||
|
pi.partition_count = 2;
|
||
|
}
|
||
|
else if (counts[3] == 0)
|
||
|
{
|
||
|
pi.partition_count = 3;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pi.partition_count = 4;
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
|
||
|
{
|
||
|
pi.partition_texel_count[i] = counts[i];
|
||
|
pi.coverage_bitmaps[i] = 0ULL;
|
||
|
}
|
||
|
|
||
|
unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
|
||
|
for (unsigned int i = 0; i < texels_to_process; i++)
|
||
|
{
|
||
|
unsigned int idx = bsd.kmeans_texels[i];
|
||
|
pi.coverage_bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* See header for documentation. */
|
||
|
void init_partition_tables(
|
||
|
block_size_descriptor& bsd
|
||
|
) {
|
||
|
partition_info *par_tab2 = bsd.partitions;
|
||
|
partition_info *par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS;
|
||
|
partition_info *par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS;
|
||
|
partition_info *par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS;
|
||
|
|
||
|
generate_one_partition_info_entry(bsd, 1, 0, *par_tab1);
|
||
|
for (int i = 0; i < 1024; i++)
|
||
|
{
|
||
|
generate_one_partition_info_entry(bsd, 2, i, par_tab2[i]);
|
||
|
generate_one_partition_info_entry(bsd, 3, i, par_tab3[i]);
|
||
|
generate_one_partition_info_entry(bsd, 4, i, par_tab4[i]);
|
||
|
}
|
||
|
|
||
|
remove_duplicate_partitionings(bsd.texel_count, par_tab2);
|
||
|
remove_duplicate_partitionings(bsd.texel_count, par_tab3);
|
||
|
remove_duplicate_partitionings(bsd.texel_count, par_tab4);
|
||
|
}
|