axmol/chipmunk/src/cpSpaceStep.c

399 lines
12 KiB
C
Raw Normal View History

/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
//#include <stdio.h>
#include <math.h>
#include "chipmunk_private.h"
#pragma mark Post Step Callback Functions
typedef struct PostStepCallback {
cpPostStepFunc func;
void *obj;
void *data;
} PostStepCallback;
static cpBool
postStepFuncSetEql(PostStepCallback *a, PostStepCallback *b){
return a->obj == b->obj;
}
static void *
postStepFuncSetTrans(PostStepCallback *callback, void *ignored)
{
PostStepCallback *value = (PostStepCallback *)cpmalloc(sizeof(PostStepCallback));
(*value) = (*callback);
return value;
}
void
cpSpaceAddPostStepCallback(cpSpace *space, cpPostStepFunc func, void *obj, void *data)
{
if(!space->postStepCallbacks){
space->postStepCallbacks = cpHashSetNew(0, (cpHashSetEqlFunc)postStepFuncSetEql, (cpHashSetTransFunc)postStepFuncSetTrans);
}
PostStepCallback callback = {func, obj, data};
cpHashSetInsert(space->postStepCallbacks, (cpHashValue)(size_t)obj, &callback, NULL);
}
void *
cpSpaceGetPostStepData(cpSpace *space, void *obj)
{
if(space->postStepCallbacks){
PostStepCallback query = {NULL, obj, NULL};
PostStepCallback *callback = (PostStepCallback *)cpHashSetFind(space->postStepCallbacks, (cpHashValue)(size_t)obj, &query);
return (callback ? callback->data : NULL);
} else {
return NULL;
}
}
#pragma mark Contact Buffer Functions
#define CP_CONTACTS_BUFFER_SIZE ((CP_BUFFER_BYTES - sizeof(cpContactBufferHeader))/sizeof(cpContact))
typedef struct cpContactBuffer {
cpContactBufferHeader header;
cpContact contacts[CP_CONTACTS_BUFFER_SIZE];
} cpContactBuffer;
static cpContactBufferHeader *
cpSpaceAllocContactBuffer(cpSpace *space)
{
cpContactBuffer *buffer = (cpContactBuffer *)cpmalloc(sizeof(cpContactBuffer));
cpArrayPush(space->allocatedBuffers, buffer);
return (cpContactBufferHeader *)buffer;
}
static cpContactBufferHeader *
cpContactBufferHeaderInit(cpContactBufferHeader *header, cpTimestamp stamp, cpContactBufferHeader *splice)
{
header->stamp = stamp;
header->next = (splice ? splice->next : header);
header->numContacts = 0;
return header;
}
static void
cpSpacePushFreshContactBuffer(cpSpace *space)
{
cpTimestamp stamp = space->stamp;
cpContactBufferHeader *head = space->contactBuffersHead;
if(!head){
// No buffers have been allocated, make one
space->contactBuffersHead = cpContactBufferHeaderInit(cpSpaceAllocContactBuffer(space), stamp, NULL);
} else if(stamp - head->next->stamp > cp_contact_persistence){
// The tail buffer is available, rotate the ring
cpContactBufferHeader *tail = head->next;
space->contactBuffersHead = cpContactBufferHeaderInit(tail, stamp, tail);
} else {
// Allocate a new buffer and push it into the ring
cpContactBufferHeader *buffer = cpContactBufferHeaderInit(cpSpaceAllocContactBuffer(space), stamp, head);
space->contactBuffersHead = head->next = buffer;
}
}
static cpContact *
cpContactBufferGetArray(cpSpace *space)
{
if(space->contactBuffersHead->numContacts + CP_MAX_CONTACTS_PER_ARBITER > CP_CONTACTS_BUFFER_SIZE){
// contact buffer could overflow on the next collision, push a fresh one.
cpSpacePushFreshContactBuffer(space);
}
cpContactBufferHeader *head = space->contactBuffersHead;
return ((cpContactBuffer *)head)->contacts + head->numContacts;
}
static inline void
cpSpacePushContacts(cpSpace *space, int count){
cpAssert(count <= CP_MAX_CONTACTS_PER_ARBITER, "Internal error, too many contact point overflow!");
space->contactBuffersHead->numContacts += count;
}
static inline void
cpSpacePopContacts(cpSpace *space, int count){
space->contactBuffersHead->numContacts -= count;
}
#pragma mark Collision Detection Functions
static inline cpBool
queryReject(cpShape *a, cpShape *b)
{
return
// BBoxes must overlap
!cpBBintersects(a->bb, b->bb)
// Don't collide shapes attached to the same body.
|| a->body == b->body
// Don't collide objects in the same non-zero group
|| (a->group && a->group == b->group)
// Don't collide objects that don't share at least on layer.
|| !(a->layers & b->layers);
}
// Callback from the spatial hash.
static void
queryFunc(cpShape *a, cpShape *b, cpSpace *space)
{
// Reject any of the simple cases
if(queryReject(a,b)) return;
// Find the collision pair function for the shapes.
struct{cpCollisionType a, b;} ids = {a->collision_type, b->collision_type};
cpHashValue collHashID = CP_HASH_PAIR(a->collision_type, b->collision_type);
cpCollisionHandler *handler = (cpCollisionHandler *)cpHashSetFind(space->collFuncSet, collHashID, &ids);
cpBool sensor = a->sensor || b->sensor;
if(sensor && handler == &space->defaultHandler) return;
// Shape 'a' should have the lower shape type. (required by cpCollideShapes() )
if(a->klass->type > b->klass->type){
cpShape *temp = a;
a = b;
b = temp;
}
// Narrow-phase collision detection.
cpContact *contacts = cpContactBufferGetArray(space);
int numContacts = cpCollideShapes(a, b, contacts);
if(!numContacts) return; // Shapes are not colliding.
cpSpacePushContacts(space, numContacts);
// Get an arbiter from space->contactSet for the two shapes.
// This is where the persistant contact magic comes from.
cpShape *shape_pair[] = {a, b};
cpHashValue arbHashID = CP_HASH_PAIR((size_t)a, (size_t)b);
cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, arbHashID, shape_pair, space);
cpArbiterUpdate(arb, contacts, numContacts, handler, a, b);
// Call the begin function first if it's the first step
if(arb->state == cpArbiterStateFirstColl && !handler->begin(arb, space, handler->data)){
cpArbiterIgnore(arb); // permanently ignore the collision until separation
}
if(
// Ignore the arbiter if it has been flagged
(arb->state != cpArbiterStateIgnore) &&
// Call preSolve
handler->preSolve(arb, space, handler->data) &&
// Process, but don't add collisions for sensors.
!sensor
){
cpArrayPush(space->arbiters, arb);
} else {
cpSpacePopContacts(space, numContacts);
arb->contacts = NULL;
arb->numContacts = 0;
// Normally arbiters are set as used after calling the post-step callback.
// However, post-step callbacks are not called for sensors or arbiters rejected from pre-solve.
if(arb->state != cpArbiterStateIgnore) arb->state = cpArbiterStateNormal;
}
// Time stamp the arbiter so we know it was used recently.
arb->stamp = space->stamp;
}
// Iterator for active/static hash collisions.
static void
active2staticIter(cpShape *shape, cpSpace *space)
{
cpSpaceHashQuery(space->staticShapes, shape, shape->bb, (cpSpaceHashQueryFunc)queryFunc, space);
}
// Hashset filter func to throw away old arbiters.
static cpBool
contactSetFilter(cpArbiter *arb, cpSpace *space)
{
if(space->sleepTimeThreshold != INFINITY){
cpBody *a = arb->a->body;
cpBody *b = arb->b->body;
// both bodies are either static or sleeping
cpBool sleepingNow =
(cpBodyIsStatic(a) || cpBodyIsSleeping(a)) &&
(cpBodyIsStatic(b) || cpBodyIsSleeping(b));
if(sleepingNow){
arb->state = cpArbiterStateSleep;
return cpTrue;
} else if(arb->state == cpArbiterStateSleep){
// wake up the arbiter and continue as normal
arb->state = cpArbiterStateNormal;
// TODO is it possible that cpArbiterStateIgnore should be set here instead?
}
}
cpTimestamp ticks = space->stamp - arb->stamp;
// was used last frame, but not this one
if(ticks >= 1 && arb->state != cpArbiterStateCached){
arb->handler->separate(arb, space, arb->handler->data);
arb->state = cpArbiterStateCached;
}
if(ticks >= cp_contact_persistence){
arb->contacts = NULL;
arb->numContacts = 0;
cpArrayPush(space->pooledArbiters, arb);
return cpFalse;
}
return cpTrue;
}
// Hashset filter func to call and throw away post step callbacks.
static void
postStepCallbackSetIter(PostStepCallback *callback, cpSpace *space)
{
callback->func(space, callback->obj, callback->data);
cpfree(callback);
}
#pragma mark All Important cpSpaceStep() Function
void cpSpaceProcessComponents(cpSpace *space, cpFloat dt);
static void updateBBCache(cpShape *shape, void *unused){cpShapeCacheBB(shape);}
void
cpSpaceStep(cpSpace *space, cpFloat dt)
{
if(!dt) return; // don't step if the timestep is 0!
cpFloat dt_inv = 1.0f/dt;
cpArray *bodies = space->bodies;
cpArray *constraints = space->constraints;
// Empty the arbiter list.
space->arbiters->num = 0;
// Integrate positions.
for(int i=0; i<bodies->num; i++){
cpBody *body = (cpBody *)bodies->arr[i];
body->position_func(body, dt);
}
// Pre-cache BBoxes and shape data.
cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)updateBBCache, NULL);
cpSpaceLock(space);
// Collide!
cpSpacePushFreshContactBuffer(space);
if(space->staticShapes->handleSet->entries)
cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)active2staticIter, space);
cpSpaceHashQueryRehash(space->activeShapes, (cpSpaceHashQueryFunc)queryFunc, space);
cpSpaceUnlock(space);
// If body sleeping is enabled, do that now.
if(space->sleepTimeThreshold != INFINITY){
cpSpaceProcessComponents(space, dt);
bodies = space->bodies; // rebuilt by processContactComponents()
}
// Clear out old cached arbiters and dispatch untouch functions
cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilter, space);
// Prestep the arbiters.
cpArray *arbiters = space->arbiters;
for(int i=0; i<arbiters->num; i++)
cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt_inv);
// Prestep the constraints.
for(int i=0; i<constraints->num; i++){
cpConstraint *constraint = (cpConstraint *)constraints->arr[i];
constraint->klass->preStep(constraint, dt, dt_inv);
}
for(int i=0; i<space->elasticIterations; i++){
for(int j=0; j<arbiters->num; j++)
cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], 1.0f);
for(int j=0; j<constraints->num; j++){
cpConstraint *constraint = (cpConstraint *)constraints->arr[j];
constraint->klass->applyImpulse(constraint);
}
}
// Integrate velocities.
cpFloat damping = cpfpow(1.0f/space->damping, -dt);
for(int i=0; i<bodies->num; i++){
cpBody *body = (cpBody *)bodies->arr[i];
body->velocity_func(body, space->gravity, damping, dt);
}
for(int i=0; i<arbiters->num; i++)
cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i]);
// run the old-style elastic solver if elastic iterations are disabled
cpFloat elasticCoef = (space->elasticIterations ? 0.0f : 1.0f);
// Run the impulse solver.
for(int i=0; i<space->iterations; i++){
for(int j=0; j<arbiters->num; j++)
cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], elasticCoef);
for(int j=0; j<constraints->num; j++){
cpConstraint *constraint = (cpConstraint *)constraints->arr[j];
constraint->klass->applyImpulse(constraint);
}
}
cpSpaceLock(space);
// run the post solve callbacks
for(int i=0; i<arbiters->num; i++){
cpArbiter *arb = (cpArbiter *) arbiters->arr[i];
cpCollisionHandler *handler = arb->handler;
handler->postSolve(arb, space, handler->data);
arb->state = cpArbiterStateNormal;
}
cpSpaceUnlock(space);
// Run the post step callbacks
// Loop because post step callbacks may create more post step callbacks
while(space->postStepCallbacks){
cpHashSet *callbacks = space->postStepCallbacks;
space->postStepCallbacks = NULL;
cpHashSetEach(callbacks, (cpHashSetIterFunc)postStepCallbackSetIter, space);
cpHashSetFree(callbacks);
}
// Increment the stamp.
space->stamp++;
}