axmol/external/Box2D/Dynamics/Joints/b2WheelJoint.cpp

420 lines
11 KiB
C++
Raw Normal View History

2013-10-12 14:15:32 +08:00
/*
* Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Dynamics/Joints/b2WheelJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>
// Linear constraint (point-to-line)
// d = pB - pA = xB + rB - xA - rA
// C = dot(ay, d)
// Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA))
// = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB)
// J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)]
// Spring linear constraint
// C = dot(ax, d)
// Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB)
// J = [-ax -cross(d+rA, ax) ax cross(rB, ax)]
// Motor rotational constraint
// Cdot = wB - wA
// J = [0 0 -1 0 0 1]
void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis)
{
bodyA = bA;
bodyB = bB;
localAnchorA = bodyA->GetLocalPoint(anchor);
localAnchorB = bodyB->GetLocalPoint(anchor);
localAxisA = bodyA->GetLocalVector(axis);
}
b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def)
: b2Joint(def)
{
m_localAnchorA = def->localAnchorA;
m_localAnchorB = def->localAnchorB;
m_localXAxisA = def->localAxisA;
m_localYAxisA = b2Cross(1.0f, m_localXAxisA);
m_mass = 0.0f;
m_impulse = 0.0f;
m_motorMass = 0.0;
m_motorImpulse = 0.0f;
m_springMass = 0.0f;
m_springImpulse = 0.0f;
m_maxMotorTorque = def->maxMotorTorque;
m_motorSpeed = def->motorSpeed;
m_enableMotor = def->enableMotor;
m_frequencyHz = def->frequencyHz;
m_dampingRatio = def->dampingRatio;
m_bias = 0.0f;
m_gamma = 0.0f;
m_ax.SetZero();
m_ay.SetZero();
}
void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data)
{
m_indexA = m_bodyA->m_islandIndex;
m_indexB = m_bodyB->m_islandIndex;
m_localCenterA = m_bodyA->m_sweep.localCenter;
m_localCenterB = m_bodyB->m_sweep.localCenter;
m_invMassA = m_bodyA->m_invMass;
m_invMassB = m_bodyB->m_invMass;
m_invIA = m_bodyA->m_invI;
m_invIB = m_bodyB->m_invI;
float32 mA = m_invMassA, mB = m_invMassB;
float32 iA = m_invIA, iB = m_invIB;
b2Vec2 cA = data.positions[m_indexA].c;
float32 aA = data.positions[m_indexA].a;
b2Vec2 vA = data.velocities[m_indexA].v;
float32 wA = data.velocities[m_indexA].w;
b2Vec2 cB = data.positions[m_indexB].c;
float32 aB = data.positions[m_indexB].a;
b2Vec2 vB = data.velocities[m_indexB].v;
float32 wB = data.velocities[m_indexB].w;
b2Rot qA(aA), qB(aB);
// Compute the effective masses.
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
b2Vec2 d = cB + rB - cA - rA;
// Point to line constraint
{
m_ay = b2Mul(qA, m_localYAxisA);
m_sAy = b2Cross(d + rA, m_ay);
m_sBy = b2Cross(rB, m_ay);
m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy;
if (m_mass > 0.0f)
{
m_mass = 1.0f / m_mass;
}
}
// Spring constraint
m_springMass = 0.0f;
m_bias = 0.0f;
m_gamma = 0.0f;
if (m_frequencyHz > 0.0f)
{
m_ax = b2Mul(qA, m_localXAxisA);
m_sAx = b2Cross(d + rA, m_ax);
m_sBx = b2Cross(rB, m_ax);
float32 invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx;
if (invMass > 0.0f)
{
m_springMass = 1.0f / invMass;
float32 C = b2Dot(d, m_ax);
// Frequency
float32 omega = 2.0f * b2_pi * m_frequencyHz;
// Damping coefficient
float32 d = 2.0f * m_springMass * m_dampingRatio * omega;
// Spring stiffness
float32 k = m_springMass * omega * omega;
// magic formulas
float32 h = data.step.dt;
m_gamma = h * (d + h * k);
if (m_gamma > 0.0f)
{
m_gamma = 1.0f / m_gamma;
}
m_bias = C * h * k * m_gamma;
m_springMass = invMass + m_gamma;
if (m_springMass > 0.0f)
{
m_springMass = 1.0f / m_springMass;
}
}
}
else
{
m_springImpulse = 0.0f;
}
// Rotational motor
if (m_enableMotor)
{
m_motorMass = iA + iB;
if (m_motorMass > 0.0f)
{
m_motorMass = 1.0f / m_motorMass;
}
}
else
{
m_motorMass = 0.0f;
m_motorImpulse = 0.0f;
}
if (data.step.warmStarting)
{
// Account for variable time step.
m_impulse *= data.step.dtRatio;
m_springImpulse *= data.step.dtRatio;
m_motorImpulse *= data.step.dtRatio;
b2Vec2 P = m_impulse * m_ay + m_springImpulse * m_ax;
float32 LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse;
float32 LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse;
vA -= m_invMassA * P;
wA -= m_invIA * LA;
vB += m_invMassB * P;
wB += m_invIB * LB;
}
else
{
m_impulse = 0.0f;
m_springImpulse = 0.0f;
m_motorImpulse = 0.0f;
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data)
{
float32 mA = m_invMassA, mB = m_invMassB;
float32 iA = m_invIA, iB = m_invIB;
b2Vec2 vA = data.velocities[m_indexA].v;
float32 wA = data.velocities[m_indexA].w;
b2Vec2 vB = data.velocities[m_indexB].v;
float32 wB = data.velocities[m_indexB].w;
// Solve spring constraint
{
float32 Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA;
float32 impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse);
m_springImpulse += impulse;
b2Vec2 P = impulse * m_ax;
float32 LA = impulse * m_sAx;
float32 LB = impulse * m_sBx;
vA -= mA * P;
wA -= iA * LA;
vB += mB * P;
wB += iB * LB;
}
// Solve rotational motor constraint
{
float32 Cdot = wB - wA - m_motorSpeed;
float32 impulse = -m_motorMass * Cdot;
float32 oldImpulse = m_motorImpulse;
float32 maxImpulse = data.step.dt * m_maxMotorTorque;
m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
impulse = m_motorImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
// Solve point to line constraint
{
float32 Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA;
float32 impulse = -m_mass * Cdot;
m_impulse += impulse;
b2Vec2 P = impulse * m_ay;
float32 LA = impulse * m_sAy;
float32 LB = impulse * m_sBy;
vA -= mA * P;
wA -= iA * LA;
vB += mB * P;
wB += iB * LB;
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data)
{
b2Vec2 cA = data.positions[m_indexA].c;
float32 aA = data.positions[m_indexA].a;
b2Vec2 cB = data.positions[m_indexB].c;
float32 aB = data.positions[m_indexB].a;
b2Rot qA(aA), qB(aB);
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
b2Vec2 d = (cB - cA) + rB - rA;
b2Vec2 ay = b2Mul(qA, m_localYAxisA);
float32 sAy = b2Cross(d + rA, ay);
float32 sBy = b2Cross(rB, ay);
float32 C = b2Dot(d, ay);
float32 k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy;
float32 impulse;
if (k != 0.0f)
{
impulse = - C / k;
}
else
{
impulse = 0.0f;
}
b2Vec2 P = impulse * ay;
float32 LA = impulse * sAy;
float32 LB = impulse * sBy;
cA -= m_invMassA * P;
aA -= m_invIA * LA;
cB += m_invMassB * P;
aB += m_invIB * LB;
data.positions[m_indexA].c = cA;
data.positions[m_indexA].a = aA;
data.positions[m_indexB].c = cB;
data.positions[m_indexB].a = aB;
return b2Abs(C) <= b2_linearSlop;
}
b2Vec2 b2WheelJoint::GetAnchorA() const
{
return m_bodyA->GetWorldPoint(m_localAnchorA);
}
b2Vec2 b2WheelJoint::GetAnchorB() const
{
return m_bodyB->GetWorldPoint(m_localAnchorB);
}
b2Vec2 b2WheelJoint::GetReactionForce(float32 inv_dt) const
{
return inv_dt * (m_impulse * m_ay + m_springImpulse * m_ax);
}
float32 b2WheelJoint::GetReactionTorque(float32 inv_dt) const
{
return inv_dt * m_motorImpulse;
}
float32 b2WheelJoint::GetJointTranslation() const
{
b2Body* bA = m_bodyA;
b2Body* bB = m_bodyB;
b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA);
b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB);
b2Vec2 d = pB - pA;
b2Vec2 axis = bA->GetWorldVector(m_localXAxisA);
float32 translation = b2Dot(d, axis);
return translation;
}
float32 b2WheelJoint::GetJointSpeed() const
{
float32 wA = m_bodyA->m_angularVelocity;
float32 wB = m_bodyB->m_angularVelocity;
return wB - wA;
}
bool b2WheelJoint::IsMotorEnabled() const
{
return m_enableMotor;
}
void b2WheelJoint::EnableMotor(bool flag)
{
m_bodyA->SetAwake(true);
m_bodyB->SetAwake(true);
m_enableMotor = flag;
}
void b2WheelJoint::SetMotorSpeed(float32 speed)
{
m_bodyA->SetAwake(true);
m_bodyB->SetAwake(true);
m_motorSpeed = speed;
}
void b2WheelJoint::SetMaxMotorTorque(float32 torque)
{
m_bodyA->SetAwake(true);
m_bodyB->SetAwake(true);
m_maxMotorTorque = torque;
}
float32 b2WheelJoint::GetMotorTorque(float32 inv_dt) const
{
return inv_dt * m_motorImpulse;
}
void b2WheelJoint::Dump()
{
int32 indexA = m_bodyA->m_islandIndex;
int32 indexB = m_bodyB->m_islandIndex;
b2Log(" b2WheelJointDef jd;\n");
b2Log(" jd.bodyA = bodies[%d];\n", indexA);
b2Log(" jd.bodyB = bodies[%d];\n", indexB);
b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected);
b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
b2Log(" jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y);
b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor);
b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed);
b2Log(" jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque);
b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz);
b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio);
b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
}