axmol/thirdparty/recast/DetourObstacleAvoidance.cpp

620 lines
15 KiB
C++
Raw Normal View History

2020-11-16 14:47:43 +08:00
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "DetourObstacleAvoidance.h"
#include "DetourCommon.h"
#include "DetourMath.h"
#include "DetourAlloc.h"
#include "DetourAssert.h"
#include <string.h>
#include <float.h>
#include <new>
static const float DT_PI = 3.14159265f;
static int sweepCircleCircle(const float* c0, const float r0, const float* v,
const float* c1, const float r1,
float& tmin, float& tmax)
{
static const float EPS = 0.0001f;
float s[3];
dtVsub(s,c1,c0);
float r = r0+r1;
float c = dtVdot2D(s,s) - r*r;
float a = dtVdot2D(v,v);
if (a < EPS) return 0; // not moving
// Overlap, calc time to exit.
float b = dtVdot2D(v,s);
float d = b*b - a*c;
if (d < 0.0f) return 0; // no intersection.
a = 1.0f / a;
const float rd = dtMathSqrtf(d);
tmin = (b - rd) * a;
tmax = (b + rd) * a;
return 1;
}
static int isectRaySeg(const float* ap, const float* u,
const float* bp, const float* bq,
float& t)
{
float v[3], w[3];
dtVsub(v,bq,bp);
dtVsub(w,ap,bp);
float d = dtVperp2D(u,v);
if (dtMathFabsf(d) < 1e-6f) return 0;
d = 1.0f/d;
t = dtVperp2D(v,w) * d;
if (t < 0 || t > 1) return 0;
float s = dtVperp2D(u,w) * d;
if (s < 0 || s > 1) return 0;
return 1;
}
dtObstacleAvoidanceDebugData* dtAllocObstacleAvoidanceDebugData()
{
void* mem = dtAlloc(sizeof(dtObstacleAvoidanceDebugData), DT_ALLOC_PERM);
if (!mem) return 0;
return new(mem) dtObstacleAvoidanceDebugData;
}
void dtFreeObstacleAvoidanceDebugData(dtObstacleAvoidanceDebugData* ptr)
{
if (!ptr) return;
ptr->~dtObstacleAvoidanceDebugData();
dtFree(ptr);
}
dtObstacleAvoidanceDebugData::dtObstacleAvoidanceDebugData() :
m_nsamples(0),
m_maxSamples(0),
m_vel(0),
m_ssize(0),
m_pen(0),
m_vpen(0),
m_vcpen(0),
m_spen(0),
m_tpen(0)
{
}
dtObstacleAvoidanceDebugData::~dtObstacleAvoidanceDebugData()
{
dtFree(m_vel);
dtFree(m_ssize);
dtFree(m_pen);
dtFree(m_vpen);
dtFree(m_vcpen);
dtFree(m_spen);
dtFree(m_tpen);
}
bool dtObstacleAvoidanceDebugData::init(const int maxSamples)
{
dtAssert(maxSamples);
m_maxSamples = maxSamples;
m_vel = (float*)dtAlloc(sizeof(float)*3*m_maxSamples, DT_ALLOC_PERM);
if (!m_vel)
return false;
m_pen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
if (!m_pen)
return false;
m_ssize = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
if (!m_ssize)
return false;
m_vpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
if (!m_vpen)
return false;
m_vcpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
if (!m_vcpen)
return false;
m_spen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
if (!m_spen)
return false;
m_tpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
if (!m_tpen)
return false;
return true;
}
void dtObstacleAvoidanceDebugData::reset()
{
m_nsamples = 0;
}
void dtObstacleAvoidanceDebugData::addSample(const float* vel, const float ssize, const float pen,
const float vpen, const float vcpen, const float spen, const float tpen)
{
if (m_nsamples >= m_maxSamples)
return;
dtAssert(m_vel);
dtAssert(m_ssize);
dtAssert(m_pen);
dtAssert(m_vpen);
dtAssert(m_vcpen);
dtAssert(m_spen);
dtAssert(m_tpen);
dtVcopy(&m_vel[m_nsamples*3], vel);
m_ssize[m_nsamples] = ssize;
m_pen[m_nsamples] = pen;
m_vpen[m_nsamples] = vpen;
m_vcpen[m_nsamples] = vcpen;
m_spen[m_nsamples] = spen;
m_tpen[m_nsamples] = tpen;
m_nsamples++;
}
static void normalizeArray(float* arr, const int n)
{
// Normalize penaly range.
float minPen = FLT_MAX;
float maxPen = -FLT_MAX;
for (int i = 0; i < n; ++i)
{
minPen = dtMin(minPen, arr[i]);
maxPen = dtMax(maxPen, arr[i]);
}
const float penRange = maxPen-minPen;
const float s = penRange > 0.001f ? (1.0f / penRange) : 1;
for (int i = 0; i < n; ++i)
arr[i] = dtClamp((arr[i]-minPen)*s, 0.0f, 1.0f);
}
void dtObstacleAvoidanceDebugData::normalizeSamples()
{
normalizeArray(m_pen, m_nsamples);
normalizeArray(m_vpen, m_nsamples);
normalizeArray(m_vcpen, m_nsamples);
normalizeArray(m_spen, m_nsamples);
normalizeArray(m_tpen, m_nsamples);
}
dtObstacleAvoidanceQuery* dtAllocObstacleAvoidanceQuery()
{
void* mem = dtAlloc(sizeof(dtObstacleAvoidanceQuery), DT_ALLOC_PERM);
if (!mem) return 0;
return new(mem) dtObstacleAvoidanceQuery;
}
void dtFreeObstacleAvoidanceQuery(dtObstacleAvoidanceQuery* ptr)
{
if (!ptr) return;
ptr->~dtObstacleAvoidanceQuery();
dtFree(ptr);
}
dtObstacleAvoidanceQuery::dtObstacleAvoidanceQuery() :
m_invHorizTime(0),
m_vmax(0),
m_invVmax(0),
m_maxCircles(0),
m_circles(0),
m_ncircles(0),
m_maxSegments(0),
m_segments(0),
m_nsegments(0)
{
}
dtObstacleAvoidanceQuery::~dtObstacleAvoidanceQuery()
{
dtFree(m_circles);
dtFree(m_segments);
}
bool dtObstacleAvoidanceQuery::init(const int maxCircles, const int maxSegments)
{
m_maxCircles = maxCircles;
m_ncircles = 0;
m_circles = (dtObstacleCircle*)dtAlloc(sizeof(dtObstacleCircle)*m_maxCircles, DT_ALLOC_PERM);
if (!m_circles)
return false;
memset(m_circles, 0, sizeof(dtObstacleCircle)*m_maxCircles);
m_maxSegments = maxSegments;
m_nsegments = 0;
m_segments = (dtObstacleSegment*)dtAlloc(sizeof(dtObstacleSegment)*m_maxSegments, DT_ALLOC_PERM);
if (!m_segments)
return false;
memset(m_segments, 0, sizeof(dtObstacleSegment)*m_maxSegments);
return true;
}
void dtObstacleAvoidanceQuery::reset()
{
m_ncircles = 0;
m_nsegments = 0;
}
void dtObstacleAvoidanceQuery::addCircle(const float* pos, const float rad,
const float* vel, const float* dvel)
{
if (m_ncircles >= m_maxCircles)
return;
dtObstacleCircle* cir = &m_circles[m_ncircles++];
dtVcopy(cir->p, pos);
cir->rad = rad;
dtVcopy(cir->vel, vel);
dtVcopy(cir->dvel, dvel);
}
void dtObstacleAvoidanceQuery::addSegment(const float* p, const float* q)
{
if (m_nsegments >= m_maxSegments)
return;
dtObstacleSegment* seg = &m_segments[m_nsegments++];
dtVcopy(seg->p, p);
dtVcopy(seg->q, q);
}
void dtObstacleAvoidanceQuery::prepare(const float* pos, const float* dvel)
{
// Prepare obstacles
for (int i = 0; i < m_ncircles; ++i)
{
dtObstacleCircle* cir = &m_circles[i];
// Side
const float* pa = pos;
const float* pb = cir->p;
const float orig[3] = {0,0,0};
float dv[3];
dtVsub(cir->dp,pb,pa);
dtVnormalize(cir->dp);
dtVsub(dv, cir->dvel, dvel);
const float a = dtTriArea2D(orig, cir->dp,dv);
if (a < 0.01f)
{
cir->np[0] = -cir->dp[2];
cir->np[2] = cir->dp[0];
}
else
{
cir->np[0] = cir->dp[2];
cir->np[2] = -cir->dp[0];
}
}
for (int i = 0; i < m_nsegments; ++i)
{
dtObstacleSegment* seg = &m_segments[i];
// Precalc if the agent is really close to the segment.
const float r = 0.01f;
float t;
seg->touch = dtDistancePtSegSqr2D(pos, seg->p, seg->q, t) < dtSqr(r);
}
}
/* Calculate the collision penalty for a given velocity vector
*
* @param vcand sampled velocity
* @param dvel desired velocity
* @param minPenalty threshold penalty for early out
*/
float dtObstacleAvoidanceQuery::processSample(const float* vcand, const float cs,
const float* pos, const float rad,
const float* vel, const float* dvel,
const float minPenalty,
dtObstacleAvoidanceDebugData* debug)
{
// penalty for straying away from the desired and current velocities
const float vpen = m_params.weightDesVel * (dtVdist2D(vcand, dvel) * m_invVmax);
const float vcpen = m_params.weightCurVel * (dtVdist2D(vcand, vel) * m_invVmax);
// find the threshold hit time to bail out based on the early out penalty
// (see how the penalty is calculated below to understnad)
float minPen = minPenalty - vpen - vcpen;
float tThresold = (m_params.weightToi / minPen - 0.1f) * m_params.horizTime;
if (tThresold - m_params.horizTime > -FLT_EPSILON)
return minPenalty; // already too much
// Find min time of impact and exit amongst all obstacles.
float tmin = m_params.horizTime;
float side = 0;
int nside = 0;
for (int i = 0; i < m_ncircles; ++i)
{
const dtObstacleCircle* cir = &m_circles[i];
// RVO
float vab[3];
dtVscale(vab, vcand, 2);
dtVsub(vab, vab, vel);
dtVsub(vab, vab, cir->vel);
// Side
side += dtClamp(dtMin(dtVdot2D(cir->dp,vab)*0.5f+0.5f, dtVdot2D(cir->np,vab)*2), 0.0f, 1.0f);
nside++;
float htmin = 0, htmax = 0;
if (!sweepCircleCircle(pos,rad, vab, cir->p,cir->rad, htmin, htmax))
continue;
// Handle overlapping obstacles.
if (htmin < 0.0f && htmax > 0.0f)
{
// Avoid more when overlapped.
htmin = -htmin * 0.5f;
}
if (htmin >= 0.0f)
{
// The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
if (htmin < tmin)
{
tmin = htmin;
if (tmin < tThresold)
return minPenalty;
}
}
}
for (int i = 0; i < m_nsegments; ++i)
{
const dtObstacleSegment* seg = &m_segments[i];
float htmin = 0;
if (seg->touch)
{
// Special case when the agent is very close to the segment.
float sdir[3], snorm[3];
dtVsub(sdir, seg->q, seg->p);
snorm[0] = -sdir[2];
snorm[2] = sdir[0];
// If the velocity is pointing towards the segment, no collision.
if (dtVdot2D(snorm, vcand) < 0.0f)
continue;
// Else immediate collision.
htmin = 0.0f;
}
else
{
if (!isectRaySeg(pos, vcand, seg->p, seg->q, htmin))
continue;
}
// Avoid less when facing walls.
htmin *= 2.0f;
// The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
if (htmin < tmin)
{
tmin = htmin;
if (tmin < tThresold)
return minPenalty;
}
}
// Normalize side bias, to prevent it dominating too much.
if (nside)
side /= nside;
const float spen = m_params.weightSide * side;
const float tpen = m_params.weightToi * (1.0f/(0.1f+tmin*m_invHorizTime));
const float penalty = vpen + vcpen + spen + tpen;
// Store different penalties for debug viewing
if (debug)
debug->addSample(vcand, cs, penalty, vpen, vcpen, spen, tpen);
return penalty;
}
int dtObstacleAvoidanceQuery::sampleVelocityGrid(const float* pos, const float rad, const float vmax,
const float* vel, const float* dvel, float* nvel,
const dtObstacleAvoidanceParams* params,
dtObstacleAvoidanceDebugData* debug)
{
prepare(pos, dvel);
memcpy(&m_params, params, sizeof(dtObstacleAvoidanceParams));
m_invHorizTime = 1.0f / m_params.horizTime;
m_vmax = vmax;
m_invVmax = vmax > 0 ? 1.0f / vmax : FLT_MAX;
dtVset(nvel, 0,0,0);
if (debug)
debug->reset();
const float cvx = dvel[0] * m_params.velBias;
const float cvz = dvel[2] * m_params.velBias;
const float cs = vmax * 2 * (1 - m_params.velBias) / (float)(m_params.gridSize-1);
const float half = (m_params.gridSize-1)*cs*0.5f;
float minPenalty = FLT_MAX;
int ns = 0;
for (int y = 0; y < m_params.gridSize; ++y)
{
for (int x = 0; x < m_params.gridSize; ++x)
{
float vcand[3];
vcand[0] = cvx + x*cs - half;
vcand[1] = 0;
vcand[2] = cvz + y*cs - half;
if (dtSqr(vcand[0])+dtSqr(vcand[2]) > dtSqr(vmax+cs/2)) continue;
const float penalty = processSample(vcand, cs, pos,rad,vel,dvel, minPenalty, debug);
ns++;
if (penalty < minPenalty)
{
minPenalty = penalty;
dtVcopy(nvel, vcand);
}
}
}
return ns;
}
// vector normalization that ignores the y-component.
inline void dtNormalize2D(float* v)
{
float d = dtMathSqrtf(v[0] * v[0] + v[2] * v[2]);
if (d==0)
return;
d = 1.0f / d;
v[0] *= d;
v[2] *= d;
}
// vector normalization that ignores the y-component.
inline void dtRorate2D(float* dest, const float* v, float ang)
{
float c = cosf(ang);
float s = sinf(ang);
dest[0] = v[0]*c - v[2]*s;
dest[2] = v[0]*s + v[2]*c;
dest[1] = v[1];
}
int dtObstacleAvoidanceQuery::sampleVelocityAdaptive(const float* pos, const float rad, const float vmax,
const float* vel, const float* dvel, float* nvel,
const dtObstacleAvoidanceParams* params,
dtObstacleAvoidanceDebugData* debug)
{
prepare(pos, dvel);
memcpy(&m_params, params, sizeof(dtObstacleAvoidanceParams));
m_invHorizTime = 1.0f / m_params.horizTime;
m_vmax = vmax;
m_invVmax = vmax > 0 ? 1.0f / vmax : FLT_MAX;
dtVset(nvel, 0,0,0);
if (debug)
debug->reset();
// Build sampling pattern aligned to desired velocity.
float pat[(DT_MAX_PATTERN_DIVS*DT_MAX_PATTERN_RINGS+1)*2];
int npat = 0;
const int ndivs = (int)m_params.adaptiveDivs;
const int nrings= (int)m_params.adaptiveRings;
const int depth = (int)m_params.adaptiveDepth;
const int nd = dtClamp(ndivs, 1, DT_MAX_PATTERN_DIVS);
const int nr = dtClamp(nrings, 1, DT_MAX_PATTERN_RINGS);
const float da = (1.0f/nd) * DT_PI*2;
const float ca = cosf(da);
const float sa = sinf(da);
// desired direction
float ddir[6];
dtVcopy(ddir, dvel);
dtNormalize2D(ddir);
dtRorate2D (ddir+3, ddir, da*0.5f); // rotated by da/2
// Always add sample at zero
pat[npat*2+0] = 0;
pat[npat*2+1] = 0;
npat++;
for (int j = 0; j < nr; ++j)
{
const float r = (float)(nr-j)/(float)nr;
pat[npat*2+0] = ddir[(j%2)*3] * r;
pat[npat*2+1] = ddir[(j%2)*3+2] * r;
float* last1 = pat + npat*2;
float* last2 = last1;
npat++;
for (int i = 1; i < nd-1; i+=2)
{
// get next point on the "right" (rotate CW)
pat[npat*2+0] = last1[0]*ca + last1[1]*sa;
pat[npat*2+1] = -last1[0]*sa + last1[1]*ca;
// get next point on the "left" (rotate CCW)
pat[npat*2+2] = last2[0]*ca - last2[1]*sa;
pat[npat*2+3] = last2[0]*sa + last2[1]*ca;
last1 = pat + npat*2;
last2 = last1 + 2;
npat += 2;
}
if ((nd&1) == 0)
{
pat[npat*2+2] = last2[0]*ca - last2[1]*sa;
pat[npat*2+3] = last2[0]*sa + last2[1]*ca;
npat++;
}
}
// Start sampling.
float cr = vmax * (1.0f - m_params.velBias);
float res[3];
dtVset(res, dvel[0] * m_params.velBias, 0, dvel[2] * m_params.velBias);
int ns = 0;
for (int k = 0; k < depth; ++k)
{
float minPenalty = FLT_MAX;
float bvel[3];
dtVset(bvel, 0,0,0);
for (int i = 0; i < npat; ++i)
{
float vcand[3];
vcand[0] = res[0] + pat[i*2+0]*cr;
vcand[1] = 0;
vcand[2] = res[2] + pat[i*2+1]*cr;
if (dtSqr(vcand[0])+dtSqr(vcand[2]) > dtSqr(vmax+0.001f)) continue;
const float penalty = processSample(vcand,cr/10, pos,rad,vel,dvel, minPenalty, debug);
ns++;
if (penalty < minPenalty)
{
minPenalty = penalty;
dtVcopy(bvel, vcand);
}
}
dtVcopy(res, bvel);
cr *= 0.5f;
}
dtVcopy(nvel, res);
return ns;
}